Measurement and control technology and instruments - APS
1 .Singal
1.1 Type
- Deterministic signal
- periodic signal
- aperiodic signal [ continuous frequency spectrum ]
- quasi-periodic signal : 2 and more frequency $cosw_0t+cos\sqrt2w_0t$
- transient signal : $x(t)=x_0e^{-at}sin(w_0t+\varphi)$
- indeterministic [ random signal ]
- stationary random signal
- nonstationary
continuous s
discrete s
analog s : 独变+幅值为连续
digital s : 离散信号 , 幅值连续
energy s : $\int^\infty_{-\infty}x^2(t)dt<\infty$
- power s : $\int^\infty_{-\infty}x^2(t)dt\rightarrow \infty$, $\dfrac{1}{t_2-t_1}\int^{t_2}_{t_1}x^2(t)dt<\infty$
1.2 Time-domain & frequency domain
- time domain : change with time
- frequency domain : frequency composition, amplitude, phase angle
1.3 Periodic square wave
1.4 Fourier series
use trigonometric function to approximate any signal
1.4.1 One side
$x(t)=a_0+\sum^\infty_{n=1}(a_ncosnw_0t+b_nsinw+0t)=a_0+\sum^\infty_1sin(nw_0t+\varphi_n)\quad n=1,2,3,\dots$
$a_0=\dfrac{1}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)dt\a_n=\dfrac{2}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)cosnw_0tdt\b_n=\dfrac{2}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)sinnw_0tdt$
$A_n=\sqrt{a^2_n+b^2_n}\tan\varphi_n=\dfrac{a_n}{b_n}$
1.4.2 Euler equation
$e^{\pm jwt}=coswt\pm jsinwt\coswt=\dfrac{1}{2}(e^{jwt}+e^{-jwt})\sinwt=\dfrac{1}{2j}(e^{jwt}-e^{-jwt})$
1.4.3 Both side
$x(t)=\sum^\infty_{n=-\infty}c_ne^{jnw_0t}=\sum^\infty_{-\infty}|c_n|e^{j(nw_0t+\varphi)}\quad n=0,\pm1,\pm2,\dots$
- $|c_n|=A_n=\sqrt{a^2_n+b^2_n}\\varphi_n=arctan\dfrac{a_n}{b_n}$
- $c_n=\dfrac{1}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)e^{-jnw_0t}dt$
- $\int^a_af(x)dx=\left{\begin{array}{c,l}2\int^a_0f(x)dx,&偶\0,&奇\end{array}\right.$
1.5 Periodic Function
1.5.1 Feature
- discrete
- have a base frequency
- amplitude is less when frequency goes higher
1.5.2 Strength
- average : $\mu_x=\dfrac{1}{T_0}\int^{T_0}_0x(t)dt$
- root mean square value : $x_{rms}=\sqrt{\dfrac{1}{T_0}\int^{T_0}_0x^2(t)dt}$
- square value: $P_{aj}=x^2_{rms}=\dfrac{1}{T_0}\int^{T_0}_0x^2(t)dt$
1.6 Aperiodic
$T_0\rightarrow\infty$ , frequency continus
1.7 Fourier transform
$X(f)=\int^\infty_{-\infty}x(t)e^{-j2\pi ft}dt=\dfrac{1}{2\pi}\int^\infty_{-\infty}x(t)e^{jwt}dt$
$x(t)=\int^\infty_{-\infty}X(f)e^{j2\pi ft}df=\int^\infty_{-\infty}X(w)e^{jwt}dw$
- $X(f)=|X(f)|e^{j\varphi(t)}$
- $|X(f)|$ : continuous amplitude spectrum
- $\varphi(f)$ continuous phase spectrum
1.7.1 Window function
$w(t)=\left{\begin{array}{cl}1,&|t|<\dfrac{T}{2}\0,&|t|>\dfrac{T}{2}\end{array}\right.\Leftrightarrow W(f)=T\dfrac{sin\pi fT}{\pi f T}=Tsinc(\pi fT)$
frequency spectrum : $W(f)=\int^\infty_{-\infty}w(t)e^{-j2\pi ft}dt=\dfrac{1}{j2\pi f}(e^{j\pi fT}-e^{j\pi fT})\\Downarrow sin(\pi fT)=\dfrac{1}{2j}(e^{j\pi fT}-e^{-\pi fT})\=T\dfrac{sin\pi fT}{\pi fT}=Tsinc(\pi fT)$
- $|W(f)|=T|sinc(\pi fT)|$
- only real part no virtual
- amplitude spectrum : $|W(f)|=T|sinc(2\pi fT)|$
1.7.2 F-transform princple
Superposition | $ax(t)+by(t)\leftrightarrow aX(f)+bY(f)$ |
---|---|
scale change | $x(kt)\leftrightarrow\dfrac{1}{k}X(\dfrac{f}{k})$ |
time change | $x(t-t_0)\leftrightarrow X(f)e^{-j2\pi ft_0}$ |
frequency change | $x(t)e^{\mp j2\pi f_0t}\leftrightarrow X(f\pm f_0)$ |
time domain convolution | $x_1(t)*x_2(t)\leftrightarrow X_1(f)X_2(f)$ |
frequency domain convolution | $x_1(t)x_2(t)\leftrightarrow X_1(f)*X_2(f)$ |
- convolution : $\int^\infty_{-\infty}x_1(\tau)x_2(t-\tau)d\tau$
1.8 $\delta$ function
Window function : $\varepsilon\rightarrow 0\quad\Rightarrow\quad\delta (t)=\left{\begin{array}{cl}\infty,&t=0\0,&t\ne0\end{array}\right.$
$\int^\infty_{-\infty}\delta(t)dt=\lim\limits_{\varepsilon\rightarrow0}\int^\infty_{-\infty}S_\varepsilon(t)dt=1$
1.8.1 Princple
sample:
$\int^\infty_{-\infty}\delta(t-t_0)f(t)dt=\int^\infty_{-\infty}\delta(t-t_0)f(t_0)dt=f(t_0)\int^\infty_{-\infty}\delta(t-t_0)dt\=f(t_0)$
convolution
$x(t)*\delta(t)=\int^\infty_{-\infty}x(\tau)\delta(t-\tau)d\tau\\Downarrow {\rm even function}\=\int^\infty_{-\infty}x(\tau)\delta(t-\tau)d\tau=x(t)$
$x(t)*\delta(t\pm t_0)=\int^\infty_{-\infty}x(\tau)\delta(t\pm t_0-\tau)d\tau=x(t\pm t_0)$
1.8.2 Frequency specturm
$\Delta (f)=\int^\infty_{-\infty}\delta(t)e^{-j2\pi ft}dt=e^0=1\\delta(t)=\int^\infty_{-\infty}1e^{j2\pi ft}df$
Time D | Frequency D |
---|---|
$\delta(t)$ | 1 |
1 | $\delta(f)$ |
$\delta(t-t_0)$ | $e^{-j2\pi f t_0}$ |
$e^{j2\pi f_0t}$ | $\delta(f-f_0)$ |
1.9 Sine and cosine
$sin2\pi f_0t\leftrightarrow\dfrac{1}{2j}[\delta(f-f_0)-\delta(f+f_0)]\cos2\pi f_0t\leftrightarrow\dfrac{1}{2}[\delta(f-f_0)+\delta(f+f_0)]$
- $sin2\pi f_0t=\dfrac{1}{2j}(e^{j2\pi f_0t}-e^{-j2\pi f_0t})\cos2\pi f_0t=\dfrac{1}{2}(e^{j2\pi f_0t}+e^{-j2\pi f_0t})$
1.10 Comb function
$comb(t,T_s)=\sum^\infty_{-\infty}\delta(t-nt_s)\quad n=0,\pm1,\pm2\dots\\Updownarrow \comb(f,f_s)=\dfrac{1}{T_s}\sum^\infty_{-\infty}\delta(f-kf_s)=\dfrac{1}{T_s}\sum^\infty_{-\infty}\delta(f-\dfrac{k}{T_s})$
1.11 Random
${x(t)}={x_1(t),x_2(t).\dots x_i(t)\dots}$
random progress
- stationary : characteristic parameter dont change with time
- nonstationary
characteristic parameter
Constant - average
$\mu_x=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x(t)dt$
fluctuation - variance
$\sigma^2_x=\lim\limits_{T\rightarrow \infty}\dfrac{1}{T}\int^T_0[x(t)-\mu_x]^2dt$
Strength - mean square value
$\psi^2_x=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x^2(t)dt$
$\sigma^2_x=\psi^2_x-\mu^2_x$
Probability density function
$p(x)=\lim\limits_{\Delta x\rightarrow0}\dfrac{P_r[x<x(t)\le x+\Delta x]}{\Delta x}\=\lim\limits_{\Delta x\rightarrow0}\dfrac{\lim\limits_{T\rightarrow\infty}\dfrac{T_x}{T}}{\Delta x}$
- $T_x=\sum\limits_1^n\Delta t_i$
- 正弦
autocorrelation function
power spectral density function
2. Testing device
2.1 Properities
Statics
device error
contain stable featuure
- Dynamic
- system parameter constant
- linear
- first=0,Laplace Transform H(s),Fourier Transform H(jw),$h(t)=L^{-1}[H(s)]$
2.2 Static Feature
2.2.1 Linearity
definition : the difference between output and ideal
$线性误差=\dfrac{\Delta max}{Y_{max}-Y_{min}}\times 100\%$
2.2.2 Sensitivity
Definition : unit input change cause the output change $\rightarrow$signal-to-noise ratio
$灵敏度=\dfrac{\Delta Y}{\Delta x}$
2.2.3 hysterisis error
when increase and decrease the difference at same time
2.2.4 Resolution
smallest tangible change
$分辨力 =\dfrac{\Delta}{X_{max}-X_{min}}\times100\%$
2.3.5 Zero wander & sensitivity wander
2.3.6 Precision
- FS精度 : $\dfrac{\Delta 误差}{Max}$ Full Scale
- real precision : $\dfrac{\Delta 误差}{测量值}$
2.4 Dynamic performance
- Transfer function H(s) [ complex domain ] $\rightarrow$$t=0$sin function stimulate
- Frequency response function H(jw) [ frequency domain ] $\rightarrow$steady state output
- impulse response function h(t) [ time domain ]
2.4.1 Series and parallel
- Series : $$H(s)=H_1(s)H_2(s)\A(w)=\prod\limits^n A_i(w)\\varphi(s)=\sum\limits_1^n\varphi_i(s)$$
- parallel :$H(w)=\sum H_i(s)$
2.4.2 First-order system
- $H(s)=\dfrac{1}{\tau s+1}$
- $ H(jw)=\dfrac{1}{j\tau w+1}\begin{cases}A(w)&=\dfrac{1}{\sqrt{1+(\tau w)^2}}\\varphi(w)&=-arctan(\tau w)\end{cases}$
- $h(t)=\dfrac{1}{\tau}e^{-\dfrac{t}{2}}$
- $\tau $重要
2.4.3 Second-order system
- $H(s)=\dfrac{w^2_n}{s^2+2\zeta w_ns+w_n^2}$
- $H(jw)=\dfrac{1}{1-(\dfrac{w}{w_n})^2+2\zeta j\dfrac{w}{w_n}}\begin{cases}A(w)&=\dfrac{1}{\sqrt{[1-(\dfrac{w}{w_n})^2]^2+4\zeta^2(\dfrac{w}{w_n})^2}}\\varphi(w)&=-arctan\dfrac{2\zeta(\dfrac{w}{w_n})}{1-(\dfrac{w}{w_n})^2}\end{cases}$
- $h(t)=\dfrac{w_n}{\sqrt{1-\zeta^2}}e^{-\zeta w_nt}sin\sqrt{1-\zeta^2}w_nt\quad 0<\zeta<1$
- $\zeta, w_n$
2.4.4 Distortionless condition
satisfy $y(t)=A_0x(t-t_0)$
$\downarrow F$
$H(w)=A(w)e^{j\varphi(w)}=\dfrac{Y(w)}{X(w)}=A_0e^{-jt_0w}$
Amplitude distortion$ : A(w)=A_0=C$
Phase distortion : $ \varphi(w)=-t_0w$
2.4.5 Dynamic measure
the frequency response method : $x(t)=X_0sin2\pi ft$
- 一阶 : $A(w)=\dfrac{1}{\sqrt{1+(\tau w)^2}}\\varphi(w)=-arctan(\tau w)$
Step response method$u(t)$
3. Sensor
3.1 Type
- mechanical
- resistance, capacitance , inductance
- Magnetoelectricity , piezoelectricity, thermoelectricity
- laser
3.2 Resistance
measure
strain, stress
force, displacement, pressure, accerleration
3.2.1 Rheostat
$R=\rho\dfrac{c}{A}$
Precision : $S=\dfrac{dR}{dx}$
3.2.2 Resistance strain
3.2.2.1 Metal strain
deformation cause resistance valve change
material : constantan
$\dfrac{dR}{R}=\varepsilon(1+2\upsilon+\lambda E)\approx (1+2\upsilon)\varepsilon$
- $\upsilon$: Possion ratio
$S_g=\dfrac{dR/R}{dl/l}=1+2\upsilon$
3.2.2.2 Semi-conductor gauge
piezoresistance : when force the resistance valve change
$\dfrac{dR}{R}=\lambda E\varepsilon\S_g=\dfrac{dR/R}{dl/l}=\lambda E$
sensitive, but affected by temperature
3.3 Capacitance
$C=\dfrac{\varepsilon_0\varepsilon A}{\delta}$
- $\varepsilon$: relative dielectric constant,aps $\varepsilon=1$
- $\varepsilon_0$: dielectric constant in vaccum,$\varepsilon_0=8.85\times10^{-12}F/m$
3.3.1 distance change
$dC=-\varepsilon\varepsilon_0A\dfrac{1}{\delta^2}d\delta\S=\dfrac{dC}{d\delta}=-\varepsilon\varepsilon_0A\dfrac{1}{\delta^2}$
unlinear
3.3.2 Area change
$A=\dfrac{\alpha r^2}{2}\C=\dfrac{\varepsilon\varepsilon_0 \alpha r^2}{2\delta}\S=\dfrac{dC}{d\alpha}=\dfrac{\varepsilon_0\varepsilon r^2}{2\delta}$
linear
3.4 Inductance
Variable Reluctance, self- inductance
$L=\dfrac{N^2}{R_m}=\dfrac{N^2\mu_0A_0}{2\delta}\S=\dfrac{N^2\mu_0A_0}{2\delta^2}$
- $N$: number of turns
- $R_m=\dfrac{2\delta}{\mu_0A_0}$ : sum
- $\mu_0$: magnetic permeability,$4\pi times 10^{-3}H/m$
3.5 Magnetoelectricity
Moving-coil
- speed : $e=NBlvsin\theta$
- angle speed : $e=kNBAw$
3.6 Piezoelectricity
Measure: pressure, stress, acceleration
Reversible : mechanical $\leftrightarrow$ electric
3.6.1 Principle
- piezoelectric effect : piezoelectric material generate electric field when pressed
- inverse piezoelectric effect : in electric field size change
3.6.2 Material
- piezoelectric monocrystal
- piezoceramics
3.6.3 Sensitive coefficient
$C=\dfrac{\varepsilon\varepsilon_0A}{\delta}$
- $\varepsilon=4.5F/m$,磺
- $\varepsilon=1200F/m$,钛酸铝
3.7 Thermoelectricity
Thermocouple: temperature difference cause electromotive force
thermal resistance : resistance value change with T
3.8 Photoelectricity
- Outside : light on , electronic out
- Inside : light , R change
3.9 Semiconductor
Magneto-dependent sensor :
Hall effect
thermosensitive
3.10 Choose
4. Signal Conditioning
4.1 Bridge
4.1.1 Direct Current Brigde
$U_0=(\dfrac{R_1}{R_1+R_2}-\dfrac{R_4}{R_3+R_4})U_e$
Signal arm : $R_1$
$U_0=(\dfrac{R_1+\Delta R}{R_1+R_2+\Delta R}-\dfrac{R_4}{R_3+R_4})U_e\\downarrow 等阻\=\dfrac{\Delta R}{2(2R+\Delta R)}U_e\approx \dfrac{\Delta R}{4R}U_e$
Half bridge : $R_1+R_2$
$U_0=(\dfrac{R_1+\Delta R}{R_1+R_2}-\dfrac{R_4}{R_1+R_4})U_e\rightarrow等阻=\dfrac{\Delta R}{2R}U_e$
Full bridge : $\sum R_i$
$U_0=(\dfrac{R_1+\Delta R}{R_1+R_2}-\dfrac{R_4-\Delta R}{R_3+R_4})U_e\rightarrow等阻=\dfrac{\Delta R}{R}U_e$
sensitivity$S=\dfrac{U_0}{\Delta R/R}$
- signal arm : $\dfrac{U_e}{4}$
- half bridge : $\dfrac{U_e}{2}$
- Full bridge : $U_e$
4.1.2 AC bridge
4 arm can + L/R/C
$Z_{01}Z_{03}=Z_{02}Z_{04}\\varphi_1+\varphi_3=\varphi_2+\varphi_4$
4.2 Modulation & demodulation
Modulation : use low frequency signal to control amplitude or frequency of oscillator signal
demodulation : recover the original signal from the modulated signal
Utilize
- denoising
- long distance transmission
4.2.1 Amplitude modulation
$调幅=高频载波\cdot 被测信号\m(t)=x(t)\cdot cos2\pi f_0t\\downarrow F\\frac{1}{2}X(f+f_0)+\frac{1}{2}X(f-f_0)$
- $f_0 muss >max(x(t))$,or 不重叠
4.2.2 Amplitude demodulation[Detection]
synchronously demodulation
$x(t)cos2\pi f_0tcos2\pi f_0 t=\frac{x(t)}{2}+\frac{1}{2}x(t)cos4\pi f_0t$
Envelope detection
4.2.3 Frequency modulation
low amplitude change with the high frequency signal
LC oscillating circuit
$f_0=\dfrac{1}{2\pi \sqrt{LC_0}} \ x(t)=Acos[w_0t+k\int x(t)dt+\theta_0]$
Demodulation Frequency discrimination : high pass filter + envelope detection
4.3 Filter
- 低通Low-Pass
- 高通High-Pass
- 带通Band-Pass=H+L
- 陷波/带阻Band-Stop/Notch=H//L
4.3.1 Parameter
Ideal
Real
- Cutoff frequency $f_{c1},f_{c2}$ : half power point,$A=\dfrac{A_0}{\sqrt2}$,[$-3dB=20\log(\dfrac{1}{\sqrt2})$]
- Bandwidth $B=f_{c2}-f_{c1}$ : [-3dB bandwidth],B$\downarrow$,discrimination$\uparrow$
- range$\pm \delta$ : small the best best
- Quality coefficient : $Q=\dfrac{f_0}{B}$,Q$\uparrow$,choosing thebz best
- 倍频程选择性 :
- up : $|A(f_{c2})-A(2f_{c2})|$
- down : $|A(f_{c1})-A(\dfrac{f_{c1}}{2})|$
- fast the best
- filter coeffecient : $\lambda=\dfrac{B_{-60dB}}{B_{-3dB}}$
- ideal=1,normal 1-5
4.3.2 Real filter circuit
low -pass
$|H(f)|=\dfrac{1}{\sqrt{1+(f/f_c)^2}}\\phi (f)=-arctan(\dfrac{f}{f_c})$
- $f_c=\dfrac{1}{2\pi RC}$
high pass
$|H(f)|=\dfrac{(f/f_c)}{\sqrt{1+(f/f_c)^2}}\\phi(f)=\dfrac{\pi}{2}-arctan(\dfrac{f}{f_c})$
4.3.3 Band pass
constant bandwidth ratio
$\dfrac{B_i}{f_{oi}}=\dfrac{f_{c2i}-f_{c1i}}{f_{0i}}=C\f_{c2i}=2^nf_{c1i}$
- n octave : n=1,octave,n=1/3,1/3 time octave
- center : $f_{oi}=\sqrt{f_{c1i}f_{c2i}}$
constant bandwidth
$B=f_{c2i}-f_{c1i}=C$
5. Signal processing
5.1 Sampling theorem
sampling frequency is twice time of $f_h$
$f_s>2f_h\quad(3\sim 4)$
no mix and overlap between the signal
5.2 Quantization $x(t)s(t)$
use one finite level to similarity the real
A/D transfer
5.3 Window function$x(t)s(t)w(t)$
- cut off : signal $\cdot$window function(time)
- give away : W(f) infinite bandwidth sinc function,$x(t)带限信号\rightarrow截断\rightarrow无限带宽$
5.4 Frequency Sampling$[x(t)s(t)w(t)]*d(t)$
pulse D(f)$\cdot$signal frequency spectrum$\rightarrow$时域窗内信号,窗外周期延拓
5.6 Correlation analysis
5.6.1 correlated coefficient
$\rho_{xy}=\dfrac{E[(x-\mu_x)(y-\mu_y)]}{\sigma_x\sigma_y}=E(XY)-E(X)E(Y)\=\pm \dfrac{1}{2}[D(X\pm Y)-D(X)-D(Y)]$
- $\sigma$ : 标准差
5.6.2 Autocorrelation function
$R_x(\tau)=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x(t)x(t+\tau)dt$
- Autocorrelation coefficient : $\rho_x(\tau)=\dfrac{R_x(\tau)-\mu_x^2}{\sigma_x^2}$
- $\mu_x^2-\sigma_x^2\le R_x(\tau)\le \mu_x^2+\sigma_x^2$
- $R_x(\tau)_{max}=R_x(0)=\psi_x^2$
- $\tau\rightarrow\infty,\rho_x(\tau)\rightarrow0/\mu_x^2$,x(t)和x(t+tau)无内部联系
- $R_x(\tau)=R_x(-\tau)$, 偶函数
- 周期函数的自相关函数仍为同频率周期函数,
[Exp]$x(t)=x_0sin(wt+\varphi)\rightarrow R_x(\tau)=\dfrac{x_0^2}{2}cosw\tau$
5.6.3 Cross-correlation function
$R_{xy}(\tau)=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x(t)y(t+\tau)dt$
- $\tau\rightarrow\infty, \rho_{xy}\rightarrow0, R_{xy}(\tau)\rightarrow\mu_x\mu_y$,$x(t),y(t)$不相关
- $\mu_x\mu_y-\sigma_x\sigma_y\le R_{xy}(\tau)\le \mu_x\mu_y+\sigma_x\sigma_y$
- 非偶
[Exp]$\begin{array}{rl}x(t)&=x_0sin(wt+\varphi)\y(t)&=y_0sint(wt+\theta)\end{array}\rightarrow R_{xy}(\tau)=\dfrac{1}{2}x_0y_0cos(wt+\varphi-\theta)$
5.7 Power spectrum
5.7.1 Auto power spectrum density
$S_x(f)-=\int^\infty_\infty R_x(\tau)e^{-j2\pi f\tau}d\tau\R_x(\tau)=\int^\infty_\infty S_x(f)e^{j2\pi f\tau}df$
5.7.2 Parseval theorem
Energy equation : $\int^\infty_\infty x^2(t)dt=\int^\infty_\infty|X(f)|^2df$
[Exp]
- $S_x(f)=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}|X(f)|^2df$
- $Y(f)=H(f)X(f)\S_y(f)=|H(f)|^2S_x(f)\S_{xy}(f)=H(f)S_x(f)$
5.7.3 Cross power spectrum
$S_{xy}(f)=\int^\infty_\infty R_{xy}(\tau) e^{-j2\pi f\tau}d\tau\\updownarrow\R_{xy}(\tau)=\int^\infty_\infty S_{xy}(f)e^{j2\pi f\tau}df$
$S_{xy}(f)=H(f)S_x(f)$
7. Vibration
7.1 Methode
- Light : 振动量to光信号
- 光学读数显微镜测振
- 激光干涉法测振
- Electric : 振动量to电量
- 频率范围宽,动态范围广,测量灵敏
7.2 Excitation
- Sin: 广
- random : 带宽,白噪声
- transient : 宽频带
- fast sin scan
- impact hammer
- step excitation
7.2.1 Exciter
excitation $\rightarrow$ object $\rightarrow$ forced vibration
- hammer
- electric exciter
7.2.2 Sensor
Vibration $\rightarrow$electric quantity
- 惯性式
- 相对式
- touch
- untouched
- 涡流位移
- 电容加速度
- 磁电加速度
- piezoelectric accelerometer
- impedance head
7.3 Signal analysis
- 振动仪
- frequency analyzer
- 频率特性分析仪
- digital signal processing system