1. 1. 1 .Singal
    1. 1.1. 1.1 Type
    2. 1.2. 1.2 Time-domain & frequency domain
    3. 1.3. 1.3 Periodic square wave
    4. 1.4. 1.4 Fourier series
      1. 1.4.1. 1.4.1 One side
      2. 1.4.2. 1.4.2 Euler equation
      3. 1.4.3. 1.4.3 Both side
    5. 1.5. 1.5 Periodic Function
      1. 1.5.1. 1.5.1 Feature
      2. 1.5.2. 1.5.2 Strength
    6. 1.6. 1.6 Aperiodic
    7. 1.7. 1.7 Fourier transform
      1. 1.7.1. 1.7.1 Window function
      2. 1.7.2. 1.7.2 F-transform princple
    8. 1.8. 1.8 $\delta$ function
      1. 1.8.1. 1.8.1 Princple
      2. 1.8.2. 1.8.2 Frequency specturm
    9. 1.9. 1.9 Sine and cosine
    10. 1.10. 1.10 Comb function
    11. 1.11. 1.11 Random
  2. 2. 2. Testing device
    1. 2.1. 2.1 Properities
    2. 2.2. 2.2 Static Feature
      1. 2.2.1. 2.2.1 Linearity
      2. 2.2.2. 2.2.2 Sensitivity
      3. 2.2.3. 2.2.3 hysterisis error
      4. 2.2.4. 2.2.4 Resolution
      5. 2.2.5. 2.3.5 Zero wander & sensitivity wander
      6. 2.2.6. 2.3.6 Precision
    3. 2.3. 2.4 Dynamic performance
      1. 2.3.1. 2.4.1 Series and parallel
      2. 2.3.2. 2.4.2 First-order system
      3. 2.3.3. 2.4.3 Second-order system
      4. 2.3.4. 2.4.4 Distortionless condition
      5. 2.3.5. 2.4.5 Dynamic measure
  3. 3. 3. Sensor
    1. 3.1. 3.1 Type
    2. 3.2. 3.2 Resistance
      1. 3.2.1. 3.2.1 Rheostat
      2. 3.2.2. 3.2.2 Resistance strain
        1. 3.2.2.1. 3.2.2.1 Metal strain
        2. 3.2.2.2. 3.2.2.2 Semi-conductor gauge
    3. 3.3. 3.3 Capacitance
      1. 3.3.1. 3.3.1 distance change
      2. 3.3.2. 3.3.2 Area change
    4. 3.4. 3.4 Inductance
    5. 3.5. 3.5 Magnetoelectricity
    6. 3.6. 3.6 Piezoelectricity
      1. 3.6.1. 3.6.1 Principle
      2. 3.6.2. 3.6.2 Material
      3. 3.6.3. 3.6.3 Sensitive coefficient
    7. 3.7. 3.7 Thermoelectricity
    8. 3.8. 3.8 Photoelectricity
    9. 3.9. 3.9 Semiconductor
    10. 3.10. 3.10 Choose
  4. 4. 4. Signal Conditioning
    1. 4.1. 4.1 Bridge
      1. 4.1.1. 4.1.1 Direct Current Brigde
      2. 4.1.2. 4.1.2 AC bridge
    2. 4.2. 4.2 Modulation & demodulation
      1. 4.2.1. 4.2.1 Amplitude modulation
      2. 4.2.2. 4.2.2 Amplitude demodulation[Detection]
      3. 4.2.3. 4.2.3 Frequency modulation
    3. 4.3. 4.3 Filter
      1. 4.3.1. 4.3.1 Parameter
      2. 4.3.2. 4.3.2 Real filter circuit
      3. 4.3.3. 4.3.3 Band pass
  5. 5. 5. Signal processing
    1. 5.1. 5.1 Sampling theorem
    2. 5.2. 5.2 Quantization $x(t)s(t)$
    3. 5.3. 5.3 Window function$x(t)s(t)w(t)$
    4. 5.4. 5.4 Frequency Sampling$[x(t)s(t)w(t)]*d(t)$
    5. 5.5. 5.6 Correlation analysis
      1. 5.5.1. 5.6.1 correlated coefficient
      2. 5.5.2. 5.6.2 Autocorrelation function
      3. 5.5.3. 5.6.3 Cross-correlation function
    6. 5.6. 5.7 Power spectrum
      1. 5.6.1. 5.7.1 Auto power spectrum density
      2. 5.6.2. 5.7.2 Parseval theorem
      3. 5.6.3. 5.7.3 Cross power spectrum
  6. 6. 7. Vibration
    1. 6.1. 7.1 Methode
    2. 6.2. 7.2 Excitation
      1. 6.2.1. 7.2.1 Exciter
      2. 6.2.2. 7.2.2 Sensor
    3. 6.3. 7.3 Signal analysis

Measurement and control technology and instruments - APS

| visited times

1 .Singal

1.1 Type

  • Deterministic signal
    • periodic signal
    • aperiodic signal [ continuous frequency spectrum ]
      • quasi-periodic signal : 2 and more frequency $cosw_0t+cos\sqrt2w_0t$
      • transient signal : $x(t)=x_0e^{-at}sin(w_0t+\varphi)$
  • indeterministic [ random signal ]
    • stationary random signal
    • nonstationary
  • continuous s

  • discrete s

  • analog s : 独变+幅值为连续

  • digital s : 离散信号 , 幅值连续

  • energy s : $\int^\infty_{-\infty}x^2(t)dt<\infty$

  • power s : $\int^\infty_{-\infty}x^2(t)dt\rightarrow \infty$, $\dfrac{1}{t_2-t_1}\int^{t_2}_{t_1}x^2(t)dt<\infty$

1.2 Time-domain & frequency domain

  • time domain : change with time
  • frequency domain : frequency composition, amplitude, phase angle

1.3 Periodic square wave

1.4 Fourier series

use trigonometric function to approximate any signal

1.4.1 One side

$x(t)=a_0+\sum^\infty_{n=1}(a_ncosnw_0t+b_nsinw+0t)=a_0+\sum^\infty_1sin(nw_0t+\varphi_n)\quad n=1,2,3,\dots$

  • $a_0=\dfrac{1}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)dt\a_n=\dfrac{2}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)cosnw_0tdt\b_n=\dfrac{2}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)sinnw_0tdt$

  • $A_n=\sqrt{a^2_n+b^2_n}\tan\varphi_n=\dfrac{a_n}{b_n}$

1.4.2 Euler equation

$e^{\pm jwt}=coswt\pm jsinwt\coswt=\dfrac{1}{2}(e^{jwt}+e^{-jwt})\sinwt=\dfrac{1}{2j}(e^{jwt}-e^{-jwt})$

1.4.3 Both side

$x(t)=\sum^\infty_{n=-\infty}c_ne^{jnw_0t}=\sum^\infty_{-\infty}|c_n|e^{j(nw_0t+\varphi)}\quad n=0,\pm1,\pm2,\dots$

  • $|c_n|=A_n=\sqrt{a^2_n+b^2_n}\\varphi_n=arctan\dfrac{a_n}{b_n}​$
  • $c_n=\dfrac{1}{T}\int^{\dfrac{T}{2}}_{-\dfrac{T}{2}}x(t)e^{-jnw_0t}dt$
  • $\int^a_af(x)dx=\left{\begin{array}{c,l}2\int^a_0f(x)dx,&偶\0,&奇\end{array}\right.$

1.5 Periodic Function

1.5.1 Feature

  • discrete
  • have a base frequency
  • amplitude is less when frequency goes higher

1.5.2 Strength

  • average : $\mu_x=\dfrac{1}{T_0}\int^{T_0}_0x(t)dt$
  • root mean square value : $x_{rms}=\sqrt{\dfrac{1}{T_0}\int^{T_0}_0x^2(t)dt}$
  • square value: $P_{aj}=x^2_{rms}=\dfrac{1}{T_0}\int^{T_0}_0x^2(t)dt​$

1.6 Aperiodic

$T_0\rightarrow\infty$ , frequency continus

1.7 Fourier transform

$X(f)=\int^\infty_{-\infty}x(t)e^{-j2\pi ft}dt=\dfrac{1}{2\pi}\int^\infty_{-\infty}x(t)e^{jwt}dt$

$x(t)=\int^\infty_{-\infty}X(f)e^{j2\pi ft}df=\int^\infty_{-\infty}X(w)e^{jwt}dw$

  • $X(f)=|X(f)|e^{j\varphi(t)}$
  • $|X(f)|$ : continuous amplitude spectrum
  • $\varphi(f)$ continuous phase spectrum

1.7.1 Window function

$w(t)=\left{\begin{array}{cl}1,&|t|<\dfrac{T}{2}\0,&|t|>\dfrac{T}{2}\end{array}\right.\Leftrightarrow W(f)=T\dfrac{sin\pi fT}{\pi f T}=Tsinc(\pi fT)$

  • frequency spectrum : $W(f)=\int^\infty_{-\infty}w(t)e^{-j2\pi ft}dt=\dfrac{1}{j2\pi f}(e^{j\pi fT}-e^{j\pi fT})\\Downarrow sin(\pi fT)=\dfrac{1}{2j}(e^{j\pi fT}-e^{-\pi fT})\=T\dfrac{sin\pi fT}{\pi fT}=Tsinc(\pi fT)$

    • $|W(f)|=T|sinc(\pi fT)|$
  • only real part no virtual
  • amplitude spectrum : $|W(f)|=T|sinc(2\pi fT)|$

1.7.2 F-transform princple

Superposition $ax(t)+by(t)\leftrightarrow aX(f)+bY(f)$
scale change $x(kt)\leftrightarrow\dfrac{1}{k}X(\dfrac{f}{k})$
time change $x(t-t_0)\leftrightarrow X(f)e^{-j2\pi ft_0}$
frequency change $x(t)e^{\mp j2\pi f_0t}\leftrightarrow X(f\pm f_0)$
time domain convolution $x_1(t)*x_2(t)\leftrightarrow X_1(f)X_2(f)$
frequency domain convolution $x_1(t)x_2(t)\leftrightarrow X_1(f)*X_2(f)$
  • convolution : $\int^\infty_{-\infty}x_1(\tau)x_2(t-\tau)d\tau$

1.8 $\delta$ function

Window function : $\varepsilon\rightarrow 0\quad\Rightarrow\quad\delta (t)=\left{\begin{array}{cl}\infty,&t=0\0,&t\ne0\end{array}\right.​$

$\int^\infty_{-\infty}\delta(t)dt=\lim\limits_{\varepsilon\rightarrow0}\int^\infty_{-\infty}S_\varepsilon(t)dt=1​$

1.8.1 Princple

  • sample:

    $\int^\infty_{-\infty}\delta(t-t_0)f(t)dt=\int^\infty_{-\infty}\delta(t-t_0)f(t_0)dt=f(t_0)\int^\infty_{-\infty}\delta(t-t_0)dt\=f(t_0)$

    convolution

    $x(t)*\delta(t)=\int^\infty_{-\infty}x(\tau)\delta(t-\tau)d\tau\\Downarrow {\rm even function}\=\int^\infty_{-\infty}x(\tau)\delta(t-\tau)d\tau=x(t)$

    $x(t)*\delta(t\pm t_0)=\int^\infty_{-\infty}x(\tau)\delta(t\pm t_0-\tau)d\tau=x(t\pm t_0)$

1.8.2 Frequency specturm

$\Delta (f)=\int^\infty_{-\infty}\delta(t)e^{-j2\pi ft}dt=e^0=1\\delta(t)=\int^\infty_{-\infty}1e^{j2\pi ft}df$

Time D Frequency D
$\delta(t)$ 1
1 $\delta(f)$
$\delta(t-t_0)$ $e^{-j2\pi f t_0}$
$e^{j2\pi f_0t}$ $\delta(f-f_0)$

1.9 Sine and cosine

$sin2\pi f_0t\leftrightarrow\dfrac{1}{2j}[\delta(f-f_0)-\delta(f+f_0)]\cos2\pi f_0t\leftrightarrow\dfrac{1}{2}[\delta(f-f_0)+\delta(f+f_0)]$

  • $sin2\pi f_0t=\dfrac{1}{2j}(e^{j2\pi f_0t}-e^{-j2\pi f_0t})\cos2\pi f_0t=\dfrac{1}{2}(e^{j2\pi f_0t}+e^{-j2\pi f_0t})​$

1.10 Comb function

$comb(t,T_s)=\sum^\infty_{-\infty}\delta(t-nt_s)\quad n=0,\pm1,\pm2\dots\\Updownarrow \comb(f,f_s)=\dfrac{1}{T_s}\sum^\infty_{-\infty}\delta(f-kf_s)=\dfrac{1}{T_s}\sum^\infty_{-\infty}\delta(f-\dfrac{k}{T_s})$

1.11 Random

${x(t)}={x_1(t),x_2(t).\dots x_i(t)\dots}$

  • random progress

    • stationary : characteristic parameter dont change with time
    • nonstationary
  • characteristic parameter

    • Constant - average

      $\mu_x=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x(t)dt$

    • fluctuation - variance

      $\sigma^2_x=\lim\limits_{T\rightarrow \infty}\dfrac{1}{T}\int^T_0[x(t)-\mu_x]^2dt$

    • Strength - mean square value

      $\psi^2_x=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x^2(t)dt$

      $\sigma^2_x=\psi^2_x-\mu^2_x$

    • Probability density function

      $p(x)=\lim\limits_{\Delta x\rightarrow0}\dfrac{P_r[x<x(t)\le x+\Delta x]}{\Delta x}\=\lim\limits_{\Delta x\rightarrow0}\dfrac{\lim\limits_{T\rightarrow\infty}\dfrac{T_x}{T}}{\Delta x}$

      • $T_x=\sum\limits_1^n\Delta t_i$
      • 正弦
    • autocorrelation function

    • power spectral density function

2. Testing device

2.1 Properities

  • Statics

    • device error

    • contain stable featuure

  • Dynamic
    • system parameter constant
    • linear
    • first=0,Laplace Transform H(s),Fourier Transform H(jw),$h(t)=L^{-1}[H(s)]$

2.2 Static Feature

2.2.1 Linearity

definition : the difference between output and ideal

$线性误差=\dfrac{\Delta max}{Y_{max}-Y_{min}}\times 100\%$

2.2.2 Sensitivity

Definition : unit input change cause the output change $\rightarrow$signal-to-noise ratio

$灵敏度=\dfrac{\Delta Y}{\Delta x}​$

2.2.3 hysterisis error

when increase and decrease the difference at same time

2.2.4 Resolution

smallest tangible change

$分辨力 =\dfrac{\Delta}{X_{max}-X_{min}}\times100\%$

2.3.5 Zero wander & sensitivity wander

2.3.6 Precision

  • FS精度 : $\dfrac{\Delta 误差}{Max}$ Full Scale
  • real precision : $\dfrac{\Delta 误差}{测量值}$

2.4 Dynamic performance

  • Transfer function H(s) [ complex domain ] $\rightarrow$$t=0$sin function stimulate
  • Frequency response function H(jw) [ frequency domain ] $\rightarrow$steady state output
  • impulse response function h(t) [ time domain ]

2.4.1 Series and parallel

  • Series : $$H(s)=H_1(s)H_2(s)\A(w)=\prod\limits^n A_i(w)\\varphi(s)=\sum\limits_1^n\varphi_i(s)$$
  • parallel :$H(w)=\sum H_i(s)$

2.4.2 First-order system

  • $H(s)=\dfrac{1}{\tau s+1}$
  • $ H(jw)=\dfrac{1}{j\tau w+1}\begin{cases}A(w)&=\dfrac{1}{\sqrt{1+(\tau w)^2}}\\varphi(w)&=-arctan(\tau w)\end{cases}$
  • $h(t)=\dfrac{1}{\tau}e^{-\dfrac{t}{2}}$
    • $\tau ​$重要

2.4.3 Second-order system

  • $H(s)=\dfrac{w^2_n}{s^2+2\zeta w_ns+w_n^2}$
  • $H(jw)=\dfrac{1}{1-(\dfrac{w}{w_n})^2+2\zeta j\dfrac{w}{w_n}}\begin{cases}A(w)&=\dfrac{1}{\sqrt{[1-(\dfrac{w}{w_n})^2]^2+4\zeta^2(\dfrac{w}{w_n})^2}}\\varphi(w)&=-arctan\dfrac{2\zeta(\dfrac{w}{w_n})}{1-(\dfrac{w}{w_n})^2}\end{cases}$
  • $h(t)=\dfrac{w_n}{\sqrt{1-\zeta^2}}e^{-\zeta w_nt}sin\sqrt{1-\zeta^2}w_nt\quad 0<\zeta<1$
    • $\zeta, w_n$

2.4.4 Distortionless condition

satisfy $y(t)=A_0x(t-t_0)$

$\downarrow F​$

$H(w)=A(w)e^{j\varphi(w)}=\dfrac{Y(w)}{X(w)}=A_0e^{-jt_0w}​$

Amplitude distortion$ : A(w)=A_0=C$

Phase distortion : $ \varphi(w)=-t_0w$

2.4.5 Dynamic measure

  • the frequency response method : $x(t)=X_0sin2\pi ft$

    • 一阶 : $A(w)=\dfrac{1}{\sqrt{1+(\tau w)^2}}\\varphi(w)=-arctan(\tau w)$
  • Step response method$u(t)$

3. Sensor

3.1 Type

  • mechanical
  • resistance, capacitance , inductance
  • Magnetoelectricity , piezoelectricity, thermoelectricity
  • laser

3.2 Resistance

measure

  • strain, stress

  • force, displacement, pressure, accerleration

3.2.1 Rheostat

$R=\rho\dfrac{c}{A}$

Precision : $S=\dfrac{dR}{dx}$

3.2.2 Resistance strain

3.2.2.1 Metal strain

deformation cause resistance valve change

material : constantan

$\dfrac{dR}{R}=\varepsilon(1+2\upsilon+\lambda E)\approx (1+2\upsilon)\varepsilon$

  • $\upsilon$: Possion ratio

$S_g=\dfrac{dR/R}{dl/l}=1+2\upsilon$

3.2.2.2 Semi-conductor gauge

piezoresistance : when force the resistance valve change

$\dfrac{dR}{R}=\lambda E\varepsilon\S_g=\dfrac{dR/R}{dl/l}=\lambda E$

sensitive, but affected by temperature

3.3 Capacitance

$C=\dfrac{\varepsilon_0\varepsilon A}{\delta}$

  • $\varepsilon$: relative dielectric constant,aps $\varepsilon=1$
  • $\varepsilon_0​$: dielectric constant in vaccum,$\varepsilon_0=8.85\times10^{-12}F/m​$

3.3.1 distance change

$dC=-\varepsilon\varepsilon_0A\dfrac{1}{\delta^2}d\delta\S=\dfrac{dC}{d\delta}=-\varepsilon\varepsilon_0A\dfrac{1}{\delta^2}​$

unlinear

3.3.2 Area change

$A=\dfrac{\alpha r^2}{2}\C=\dfrac{\varepsilon\varepsilon_0 \alpha r^2}{2\delta}\S=\dfrac{dC}{d\alpha}=\dfrac{\varepsilon_0\varepsilon r^2}{2\delta}$

linear

3.4 Inductance

Variable Reluctance, self- inductance

$L=\dfrac{N^2}{R_m}=\dfrac{N^2\mu_0A_0}{2\delta}\S=\dfrac{N^2\mu_0A_0}{2\delta^2}​$

  • $N$: number of turns
  • $R_m=\dfrac{2\delta}{\mu_0A_0}$ : sum
    • $\mu_0$: magnetic permeability,$4\pi times 10^{-3}H/m$

3.5 Magnetoelectricity

Moving-coil

  • speed : $e=NBlvsin\theta$
  • angle speed : $e=kNBAw$

3.6 Piezoelectricity

Measure: pressure, stress, acceleration

Reversible : mechanical $\leftrightarrow$ electric

3.6.1 Principle

  • piezoelectric effect : piezoelectric material generate electric field when pressed
  • inverse piezoelectric effect : in electric field size change

3.6.2 Material

  • piezoelectric monocrystal
  • piezoceramics

3.6.3 Sensitive coefficient

$C=\dfrac{\varepsilon\varepsilon_0A}{\delta}$

  • $\varepsilon=4.5F/m$,磺
  • $\varepsilon=1200F/m$,钛酸铝

3.7 Thermoelectricity

  • Thermocouple: temperature difference cause electromotive force

  • thermal resistance : resistance value change with T

3.8 Photoelectricity

  • Outside : light on , electronic out
  • Inside : light , R change

3.9 Semiconductor

  • Magneto-dependent sensor :

    Hall effect

  • thermosensitive

3.10 Choose

4. Signal Conditioning

4.1 Bridge

4.1.1 Direct Current Brigde

$U_0=(\dfrac{R_1}{R_1+R_2}-\dfrac{R_4}{R_3+R_4})U_e$

  • Signal arm : $R_1$

    $U_0=(\dfrac{R_1+\Delta R}{R_1+R_2+\Delta R}-\dfrac{R_4}{R_3+R_4})U_e\\downarrow 等阻\=\dfrac{\Delta R}{2(2R+\Delta R)}U_e\approx \dfrac{\Delta R}{4R}U_e$

  • Half bridge : $R_1+R_2$

    $U_0=(\dfrac{R_1+\Delta R}{R_1+R_2}-\dfrac{R_4}{R_1+R_4})U_e\rightarrow等阻=\dfrac{\Delta R}{2R}U_e$

  • Full bridge : $\sum R_i$

    $U_0=(\dfrac{R_1+\Delta R}{R_1+R_2}-\dfrac{R_4-\Delta R}{R_3+R_4})U_e\rightarrow等阻=\dfrac{\Delta R}{R}U_e$

sensitivity$S=\dfrac{U_0}{\Delta R/R}$

  • signal arm : $\dfrac{U_e}{4}$
  • half bridge : $\dfrac{U_e}{2}$
  • Full bridge : $U_e$

4.1.2 AC bridge

4 arm can + L/R/C

$Z_{01}Z_{03}=Z_{02}Z_{04}\\varphi_1+\varphi_3=\varphi_2+\varphi_4$

4.2 Modulation & demodulation

  • Modulation : use low frequency signal to control amplitude or frequency of oscillator signal

  • demodulation : recover the original signal from the modulated signal

Utilize

  • denoising
  • long distance transmission

4.2.1 Amplitude modulation

$调幅=高频载波\cdot 被测信号\m(t)=x(t)\cdot cos2\pi f_0t\\downarrow F\\frac{1}{2}X(f+f_0)+\frac{1}{2}X(f-f_0)​$

  • $f_0 muss >max(x(t))$,or 不重叠

4.2.2 Amplitude demodulation[Detection]

  • synchronously demodulation

    $x(t)cos2\pi f_0tcos2\pi f_0 t=\frac{x(t)}{2}+\frac{1}{2}x(t)cos4\pi f_0t$

  • Envelope detection

4.2.3 Frequency modulation

low amplitude change with the high frequency signal

LC oscillating circuit

$f_0=\dfrac{1}{2\pi \sqrt{LC_0}} \ x(t)=Acos[w_0t+k\int x(t)dt+\theta_0]$

Demodulation Frequency discrimination : high pass filter + envelope detection

4.3 Filter

  • 低通Low-Pass
  • 高通High-Pass
  • 带通Band-Pass=H+L
  • 陷波/带阻Band-Stop/Notch=H//L

4.3.1 Parameter

  • Ideal

  • Real

    • Cutoff frequency $f_{c1},f_{c2}​$ : half power point,$A=\dfrac{A_0}{\sqrt2}​$,[$-3dB=20\log(\dfrac{1}{\sqrt2})​$]
    • Bandwidth $B=f_{c2}-f_{c1}$ : [-3dB bandwidth],B$\downarrow$,discrimination$\uparrow$
    • range$\pm \delta$ : small the best best
    • Quality coefficient : $Q=\dfrac{f_0}{B}$,Q$\uparrow$,choosing thebz best
    • 倍频程选择性 :
      • up : $|A(f_{c2})-A(2f_{c2})|$
      • down : $|A(f_{c1})-A(\dfrac{f_{c1}}{2})|$
      • fast the best
    • filter coeffecient : $\lambda=\dfrac{B_{-60dB}}{B_{-3dB}}$
      • ideal=1,normal 1-5

4.3.2 Real filter circuit

  • low -pass

    $|H(f)|=\dfrac{1}{\sqrt{1+(f/f_c)^2}}\\phi (f)=-arctan(\dfrac{f}{f_c})$

    • $f_c=\dfrac{1}{2\pi RC}$
  • high pass

    $|H(f)|=\dfrac{(f/f_c)}{\sqrt{1+(f/f_c)^2}}\\phi(f)=\dfrac{\pi}{2}-arctan(\dfrac{f}{f_c})​$

4.3.3 Band pass

  • constant bandwidth ratio

    $\dfrac{B_i}{f_{oi}}=\dfrac{f_{c2i}-f_{c1i}}{f_{0i}}=C\f_{c2i}=2^nf_{c1i}$

    • n octave : n=1,octave,n=1/3,1/3 time octave
    • center : $f_{oi}=\sqrt{f_{c1i}f_{c2i}}$
  • constant bandwidth

    $B=f_{c2i}-f_{c1i}=C$

5. Signal processing

5.1 Sampling theorem

sampling frequency is twice time of $f_h$

$f_s>2f_h\quad(3\sim 4)​$

no mix and overlap between the signal

5.2 Quantization $x(t)s(t)$

use one finite level to similarity the real

A/D transfer

5.3 Window function$x(t)s(t)w(t)$

  • cut off : signal $\cdot$window function(time)
  • give away : W(f) infinite bandwidth sinc function,$x(t)带限信号\rightarrow截断\rightarrow无限带宽$

5.4 Frequency Sampling$[x(t)s(t)w(t)]*d(t)$

pulse D(f)$\cdot$signal frequency spectrum$\rightarrow$时域窗内信号,窗外周期延拓

5.6 Correlation analysis

5.6.1 correlated coefficient

$\rho_{xy}=\dfrac{E[(x-\mu_x)(y-\mu_y)]}{\sigma_x\sigma_y}=E(XY)-E(X)E(Y)\=\pm \dfrac{1}{2}[D(X\pm Y)-D(X)-D(Y)]$

  • $\sigma​$ : 标准差

5.6.2 Autocorrelation function

$R_x(\tau)=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x(t)x(t+\tau)dt$

  • Autocorrelation coefficient : $\rho_x(\tau)=\dfrac{R_x(\tau)-\mu_x^2}{\sigma_x^2}$
    • $\mu_x^2-\sigma_x^2\le R_x(\tau)\le \mu_x^2+\sigma_x^2​$
    • $R_x(\tau)_{max}=R_x(0)=\psi_x^2$
    • $\tau\rightarrow\infty,\rho_x(\tau)\rightarrow0/\mu_x^2$,x(t)和x(t+tau)无内部联系
    • $R_x(\tau)=R_x(-\tau)$, 偶函数
    • 周期函数的自相关函数仍为同频率周期函数,

[Exp]$x(t)=x_0sin(wt+\varphi)\rightarrow R_x(\tau)=\dfrac{x_0^2}{2}cosw\tau$

5.6.3 Cross-correlation function

$R_{xy}(\tau)=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}\int^T_0x(t)y(t+\tau)dt$

  • $\tau\rightarrow\infty, \rho_{xy}\rightarrow0, R_{xy}(\tau)\rightarrow\mu_x\mu_y$,$x(t),y(t)$不相关
  • $\mu_x\mu_y-\sigma_x\sigma_y\le R_{xy}(\tau)\le \mu_x\mu_y+\sigma_x\sigma_y$
  • 非偶

[Exp]$\begin{array}{rl}x(t)&=x_0sin(wt+\varphi)\y(t)&=y_0sint(wt+\theta)\end{array}\rightarrow R_{xy}(\tau)=\dfrac{1}{2}x_0y_0cos(wt+\varphi-\theta)$

5.7 Power spectrum

5.7.1 Auto power spectrum density

$S_x(f)-=\int^\infty_\infty R_x(\tau)e^{-j2\pi f\tau}d\tau\R_x(\tau)=\int^\infty_\infty S_x(f)e^{j2\pi f\tau}df​$

5.7.2 Parseval theorem

Energy equation : $\int^\infty_\infty x^2(t)dt=\int^\infty_\infty|X(f)|^2df$

[Exp]

  • $S_x(f)=\lim\limits_{T\rightarrow\infty}\dfrac{1}{T}|X(f)|^2df$
  • $Y(f)=H(f)X(f)\S_y(f)=|H(f)|^2S_x(f)\S_{xy}(f)=H(f)S_x(f)$

5.7.3 Cross power spectrum

$S_{xy}(f)=\int^\infty_\infty R_{xy}(\tau) e^{-j2\pi f\tau}d\tau\\updownarrow\R_{xy}(\tau)=\int^\infty_\infty S_{xy}(f)e^{j2\pi f\tau}df$

$S_{xy}(f)=H(f)S_x(f)$

7. Vibration

7.1 Methode

  • Light : 振动量to光信号
    • 光学读数显微镜测振
    • 激光干涉法测振
  • Electric : 振动量to电量
    • 频率范围宽,动态范围广,测量灵敏

7.2 Excitation

  • Sin: 广
  • random : 带宽,白噪声
  • transient : 宽频带
    • fast sin scan
    • impact hammer
    • step excitation

7.2.1 Exciter

excitation $\rightarrow$ object $\rightarrow$ forced vibration

  • hammer
  • electric exciter

7.2.2 Sensor

Vibration $\rightarrow$electric quantity

  • 惯性式
  • 相对式
  • touch
  • untouched
  • 涡流位移
  • 电容加速度
  • 磁电加速度
  • piezoelectric accelerometer
  • impedance head

7.3 Signal analysis

  • 振动仪
  • frequency analyzer
  • 频率特性分析仪
  • digital signal processing system