1. 1. 1. Basic
  2. 2. 2 Axial tension & compression
    1. 2.1. 2.1 Concept
    2. 2.2. 2.2 Strain
      1. 2.2.1. Pull Rod Strength Condition
    3. 2.3. 2.3 Deformation
    4. 2.4. 2.4 Mechanical Properity
      1. 2.4.1. 2.4.1 plasticity
      2. 2.4.2. 2.4.2 Tensile test
    5. 2.5. 2.5 Statically Indeterminate
  3. 3. 3 Shear
    1. 3.1. Strength Condition
  4. 4. 4 Torsion
    1. 4.1. 4.1 Shear stress
    2. 4.2. 4.2 Shear Hooke Principle
    3. 4.3. 4.3 Shear stress equal
    4. 4.4. 4.4 Strength Check
    5. 4.5. 4.5 Deformation
      1. 4.5.1. Stiffness check
    6. 4.6. 4.6 Material break
    7. 4.7. 4.7 Rectangular section
  5. 5. 5 Bending stress
    1. 5.1. 5.1 Type
    2. 5.2. 5.2 Shear force and bending moment
      1. 5.2.1. 5.2.1 Equation
      2. 5.2.2. 5.2.2 Graph
      3. 5.2.3. 5.2.3 Superposition
  6. 6. 6 Beam stress
    1. 6.1. 6.1 Normal stress
      1. 6.1.1. 6.1.1 Pure bending
      2. 6.1.2. 6.1.2 Statics balance condition
      3. 6.1.3. 6.1.3 Strength Condition
    2. 6.2. 6.2 Shear stress
      1. 6.2.1. Strength Condition
  7. 7. 7 Bending deformation
    1. 7.1. 7.1 Deflection curve differential function
      1. 7.1.1. Superposition
    2. 7.2. 7.2 Strength Condition
    3. 7.3. 7.3 Indeterminate
    4. 7.4. 7.4 Beam Combination
  8. 8. 8 Stress State
    1. 8.1. 8.1 Stress element
    2. 8.2. 8.2 State type
    3. 8.3. 8.3 Analysis
      1. 8.3.1. 8.3.1 Analytical
    4. 8.4. 8.3.2 Graphical
      1. 8.4.1. 3d stress state
    5. 8.5. 8.3 General Hooke Principle
    6. 8.6. 8.4 Strength Theory
      1. 8.6.1. Maximal pulling stress (1st)
      2. 8.6.2. Maximal pulling strain (2nd)
      3. 8.6.3. Maximal shear stress(3rd)
      4. 8.6.4. Shape deformation ratio energy
  9. 9. 9 Deformation Combination
    1. 9.1. 9.1 Oblique bending
    2. 9.2. 9.2 Pulling & Bending
      1. 9.2.1. Eccentrical pull
    3. 9.3. 9.3 Torsion & Bending & Pull
  10. 10. 10 Energy Method
    1. 10.1. 10.1 External Force Work
    2. 10.2. 10.2 Strain energy
    3. 10.3. 10.3 complementary work
      1. 10.3.1. Displacement Calculation
    4. 10.4. 10.4 Reciprocal principle
    5. 10.5. 10.5 Castigliano’s theorem
  11. 11. 11 Press Stability
    1. 11.1. 11.1 critical force
    2. 11.2. 11.2 Calculation
  12. 12. 12 Dynamic load

Mechanics of Materials - APS

| visited times

1. Basic

  • Obeject : Deformed solid

  • internal force : interaction created by inner part change

    • Axial force : $F_N$
    • Shear force : $F_{sy},F_{sz}$
    • torque : $T$
    • bending moment : $M_y,M_z$
  • Stress : section, Pa

    • normal stress : $\sigma$
    • shear : $\tau$
    • full

  • Strain

    • normal strain : $\varepsilon$, no unit

    • shear strain : $\gamma$

  • Hooke theory : $\sigma=E\varepsilon$

    • E : Elastic Modulus
  • Shear hooke theory : $\tau=G\gamma$

    • G : shear elastic modulus
  • Component

    • rod piece
    • block
    • shell
    • board
  • basic deformation

    • stretch & compress
    • shear
    • torsion
    • bend

2 Axial tension & compression

2.1 Concept

  • along the axis

  • make axis length greater or less

  • $F_N$

    • positive : out

    • negative : in

    • graph

2.2 Strain

$$\sigma=\dfrac{F_N}{A}$$

  • Pa

slope section

Pull Rod Strength Condition

  • ultimate stress : break down the work piece
  • allowable stress : $[\sigma]=\dfrac{\sigma}{n}$
    • n : safety factor
  • strength condition : $\sigma_{max}\le[\sigma]$

utilize

  • strength check
  • section size design
  • make sure external load

2.3 Deformation

  • axial : $\Delta L=L’-L$

    • linear strain : $\varepsilon=\dfrac{\Delta L}{L}$

    $$\Delta L=\dfrac{F_NL}{EA}$$

    • EA : extensional rigidity
    • $\Delta l$ : stretch +, compress -
  • lateral : $\Delta b=b_1-b$

    • lateral linear strain : $\varepsilon’=\dfrac{\Delta b}{b}$
    • $\varepsilon’=-\mu\varepsilon$
      • $\mu$ : poisson ratio

2.4 Mechanical Properity

  • elastic range OA

    • $\sigma_e$ : elastic limit
  • yield range BC

    • $\sigma_s$ : yield limit
  • hardening range CD

    • $\sigma_B$ : ultimate strength
  • necking range DE

  • cold hardening

    • elastic strain
    • plastic strain

    over yield range, unload and load, make $\sigma_e$ higher

2.4.1 plasticity

$\delta=\dfrac{\Delta l}{l_0}\times 100\%$

  • > 5,% plastic material
  • <5%, brittleness material

2.4.2 Tensile test

  • Low-carbon steel

  • cast iron

2.5 Statically Indeterminate

unknown force more than statics equation, caused by Redundant Restraint

3 Shear

external force place at two side of material, same modulus, opposite direction, close active line

Strength Condition

utilize

  • strength check
  • section size design
  • make sure external load
  • shear

    $$\tau=\dfrac{F_S}{A}\le[\tau]$$

    • $[\tau]$ : allowable shear stress
  • extrusion

    $$\sigma_{bs}=\dfrac{F_{bs}}{A_{bs}}\le[\sigma]_{bs}$$

4 Torsion

  • +, out
  • -,in
  • graph

4.1 Shear stress

$\varepsilon=0,\sigma=0$

thin tube : $T=\int \tau dAr_0=\int\limits_0^{2\pi}\tau r^2 td\alpha=\tau r^2_0t2\pi$

$$\tau=\dfrac{T}{2\pi r^2_0t}$$

4.2 Shear Hooke Principle

$$\tau=G\gamma=G\rho\dfrac{d\varphi}{dx}$$

with $T=\int_AdA\tau_\rho=G\dfrac{d\varphi}{dx}\int_A\rho^2dA$

let $I_A=\int_A\rho^2dA$

so $\dfrac{d\varphi}{dx}=\dfrac{T}{GI_p}$

then $\tau_\rho=\dfrac{T\rho}{I_\rho}$

$$\tau_{max}=\dfrac{T}{I_\rho}\rho_{max}=\dfrac{T}{W_\rho}$$

  • $I_p$ : polar moment of inertia , m4
  • $W_p$, anti torsion section modulus, m3
$I_p$ $W_p$
solid circle $\dfrac{\pi d^4}{32}$ $\dfrac{\pi d^3}{16}$
hollow circle $\dfrac{\pi D^4}{32}(1-\alpha^4)$ $\dfrac{\pi D^3}{16}(1-\alpha^4)$

4.3 Shear stress equal

the vertical plane have a pair of shear stress with same modulus

4.4 Strength Check

$\tau_{max}=\dfrac{T_{max}}{W_p}\le[\tau]$

4.5 Deformation

$\dfrac{d\varphi}{dx}=\dfrac{T}{GI_p}=\theta$

  • $\theta$ : angle of torsion

so $\varphi=\int_L\dfrac{T}{GI_p}dx$

Stiffness check

$\theta_{max}=\dfrac{T_{max}}{GI_p}\le[\theta]$

4.6 Material break

  • low-carbon steel : cross section
  • cast iron : 45 degree spiral

4.7 Rectangular section

  • vertex = 0
  • side : parallel

long rectangular section

5 Bending stress

  • force vertical to beam, at the mid

5.1 Type

  • cantilever
  • simply supported beam
  • overhanging beam

5.2 Shear force and bending moment

5.2.1 Equation

$$\dfrac{dF_s(x)}{dx}=q(x)\\dfrac{dM(x)}{dx}=F_s(x)\\dfrac{d^2M(x)}{dx^2}=q(x)$$

5.2.2 Graph

5.2.3 Superposition

6 Beam stress

6.1 Normal stress

6.1.1 Pure bending

suppose all the landscape and portrait plane still plane after deformation

bending is actually each section rotate around the neural surface, one side compress and the other strech

  • strain

    $$\varepsilon=\dfrac{y}{\rho}$$

    so $\sigma=E\varepsilon=\dfrac{Ey}{\rho}$

6.1.2 Statics balance condition

$$\sigma=\dfrac{My}{I_z}$$

  • positive, up

  • negative, down

  • $\sigma_{max}=\dfrac{My_{max}}{I_z}=\dfrac{M}{W_z}$

    • $W_z$ : section modulus in bending

      | | $I_z$ | $W_z$ |
      | ————- | ——————————— | ——————————— |
      | solid circle | $\dfrac{\pi d^4}{64}$ | $\dfrac{\pi d^3}{32}$ |
      | hollow circle | $\dfrac{\pi D^4}{64}(1-\alpha^4)$ | $\dfrac{\pi D^3}{32}(1-\alpha^4)$ |

6.1.3 Strength Condition

$\sigma_{max}=\dfrac{M_{max}}{W_z}\le[\sigma]$

6.2 Shear stress

$$\tau=\dfrac{F_ZS_z^*}{I_Zb}$$

  • $S_Z^*=y_c^*A^*$

  • max mid : I-beam, round beam

Strength Condition

normal in the neural surface

$$\tau_{max}=\dfrac{F_{max}S_{zmax}^*}{I_zb}\le[\tau]$$

7 Bending deformation

  • Deflection curve : deformation axis curve
  • Deflection $y$ : section centroid vertical movement
  • angle $\theta$ : the section rotate angle round neural axis
  • angle equation $\theta(x)=\dfrac{dy}{dx}=y’$

7.1 Deflection curve differential function

$\dfrac{1}{\rho(x)}=\dfrac{M(x)}{EI_z}\\dfrac{1}{\rho}=\pm y’’$, so $EIy’’=\pm M$, usually

$$EIy’’=-M(x)$$

  • Boundary condition
    • fixed end : $y=0,\theta=0$
    • hinged shoe : $y=0$
  • Continuity condition
    • $y_1=y_2, \theta_1=\theta_2$

Superposition

7.2 Strength Condition

$$y_{max}\le[\delta]\\theta_{max}\le[\theta]$$

  • strength check
  • section design
  • external load

7.3 Indeterminate

make the constraint to a force, and let the y here to be 0

7.4 Beam Combination

cut at joint, relationship condition

8 Stress State

8.1 Stress element

  • main plane : $\tau=0$
  • main stress : at main plane
  • $\sigma_1\ge\sigma_2\ge\sigma_3$

8.2 State type

  • 3-d
  • 2-d
  • single stress
  • pure shear

8.3 Analysis

8.3.1 Analytical

  • $\sigma$ max when $\dfrac{d\sigma_\alpha}{d\alpha}\Big\lvert_{\alpha_0}=0$

    $$\sigma_{max/min}=\dfrac{\sigma_x+\sigma_y}{2}\pm\sqrt{(\dfrac{\sigma_x-\sigma_y}{2})^2+\tau^2_x}$$

  • $\tau$ max , when $\dfrac{d\tau_\alpha}{d\alpha}\Big\lvert_{\alpha_1}=0$

    $$\tau_{\max/\min}=\pm\sqrt{(\dfrac{\sigma_x-\sigma_y}{2})^2+\tau^2_x}$$

  • $\alpha_1=\alpha_0+45^\circ$

8.3.2 Graphical

  • stress circle

3d stress state

8.3 General Hooke Principle

8.4 Strength Theory

Maximal pulling stress (1st)

$$\sigma_1\le\dfrac{\sigma_b}{n}=[\sigma]$$

Maximal pulling strain (2nd)

$$\varepsilon=\dfrac{1}{E}[\sigma_1-\mu(\sigma_2+\sigma_3)]\le[\sigma]$$

Maximal shear stress(3rd)

$$\tau_{max}=\dfrac{1}{2}(\sigma_1-\sigma_3)\le[\sigma]$$

Shape deformation ratio energy

$v_d=\dfrac{1+v}{6E}[(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2]$

$$\sqrt{\dfrac{1}{2}[(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2]}\le[\sigma]$$

9 Deformation Combination

use Superposition

9.1 Oblique bending

  • strength condition

  • deformation calculation

9.2 Pulling & Bending

strength condition

$$\sigma_{max}^{top}=\dfrac{M_{zmax}}{W_z}+\dfrac{F_N}{A}\le[\sigma]\\sigma_{max}^{bottom}=\dfrac{M_{zmax}}{W_z}+\dfrac{F_N}{A}\le[\sigma]$$

Eccentrical pull

9.3 Torsion & Bending & Pull

10 Energy Method

10.1 External Force Work

$$W=\dfrac{1}{2}\sum F_i\delta_i$$

10.2 Strain energy

  • pull

  • shear

  • torsion

  • bending

  • combination

    $$U=\int\dfrac{F^2_N(x)dx}{2EA}+\int\dfrac{M^2_t(x)dx}{2GI_p}+\int\dfrac{M^2(x)dx}{2EI}$$

10.3 complementary work

Displacement Calculation

10.4 Reciprocal principle

10.5 Castigliano’s theorem

  • CT1

    $$\dfrac{\partial U}{\partial \delta_i}=F_i$$

  • Complementary theory

    $$\delta_i=\dfrac{\partial U^*}{\partial F_i}$$

  • CT2

    $$\delta_i=\dfrac{\partial U}{\partial F_i}$$

    CT2 for indeterminate problem

11 Press Stability

  • example

  • flexibility $\lambda$
  • radius of inertia i

11.1 critical force

11.2 Calculation

  • safety factor

  • the p-multiplier method

12 Dynamic load

  • static acceleration : $\sigma_d=\dfrac{F_{Nd}}{A}=(1+\dfrac{a}{g})\gamma x$

  • static angular velocity

    • $F=ma_n=\dfrac{\gamma AL}{g}w^2\dfrac{D}{2}$
    • $q_d=\dfrac{ma_n}{L}$
    • $\sigma_d=\dfrac{F_nd}{A}=\dfrac{q_dD}{2A}=\dfrac{\gamma v^2}{g}$

  • shock : energy conservation

    • free fall

      • $\Delta_d=K_d\Delta_{st}=(1+\sqrt{1+\dfrac{2h}{\Delta_{st}}})\Delta_{st}$
      • $\sigma_d=K_d\dfrac{Q}{A}$

    • horizontal shock

      $K_d=\sqrt{\dfrac{v^2}{g\Delta_{st}}}$