Electrotechnology(Electrical Technology) - APS
1. Circuit
built for power or signal transmission
real to ideal
- closed circuit
- open circuit
- short circuit
1.1 Basic Components
- U : Voltage, V
- $V_x$ : Electric potential to some point
- R : linear resistance, Ohm $\Omega$
- series : sum
- parallel : $\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\cdots$
- I : Current, Ampere A
- P : Power, Watt
- >0 load
- <0 power supply
1.2 Power
power source : Electromotive force
current source
1.3 Kirchhoff
- KCL current law : node $\sum i=0$
KVL voltage law : circle $\sum u=0$
Branch Current Method : use KCL and KVL
- KCL : node-1 个
- KVL : branch 个
1.4 Superposition principle
1.5 Thevenin’s Theorem & Norton Theorem
TT : Any combination of batteries and resistances with two terminals to power source and resistence
NT : to current source
2. Transient analysis
2.1 RLC
$L=\dfrac{\Psi({\rm Flux})}{i}$ : inductance, Henry H
- $\Psi=n\Phi$Flux Weber, Wb
- $e=-L\dfrac{di}{dt}=u$
- $W=\int\limits^t_0pdt=\int\limits^t_0uidt\=\int\limits^i_0Lidi=\frac{1}{2}Li^2$
- save energy to magnetic
$C=\dfrac{q}{u}$ : capacitance, Farad F
- $i=C\dfrac{du}{dt}$
- $W=\frac{1}{2}Cu^2$
- save to the Electric field energy
2.2 RC
Zero input response : power=0
Differential equation : $RC\dfrac{du_c}{dt}+u_c=0$
$u_c=\exp(-\dfrac{t}{RC})$
Time constant : $\tau=RC$
- >5$\tau$ stable
Zero state response : energy storage element u/i=0
- $RC\frac{du_c}{t}+u_c=U$
- $u_c=K-\exp(-\dfrac{t}{RC})$, K putin
- $u_c=U-\exp(-\dfrac{t}{RC})$
RL : $\tau=\dfrac{L}{R}$
2.3 First Order Response
only 1 energy storage element
$$x(t)=x(\infty)+[f(0_+)-f(\infty)]e^{-t/\tau}$$
- Initial condition : $i_L(0_+)=i_L(0_-)\u_c(0_+)=u_c(0_-)$
3. Sinusoidal alternating current
3.1 Basic concepts
$$e=E_m\sin(wt+\psi_e)\u=U_m\sin(wt+\psi_u)\i=I_m\sin(wt+\psi_i)$$
- w : angular frequency (unit : radians per second)
- $U_m/I_m$ : peak voltage/current
- $\psi$ : phase
- $\phi=\psi_1-\psi_2$ : phase shift
- >0 : 2 lead 1, 1 lagging
- <0 : 1 lead 2
- 180 : mirror-image
- Valid value
- $A=\dfrac{A}{\sqrt{2}}$
3.2 Phasor Diagrams
use complex number
$$u=U_m\sin(wt+\psi)\Longleftrightarrow\dot{U_m}=U_me^{j\psi}=U_m\angle\psi$$
- $R =R\angle 0$
- real power :$P=U^2/R$
- L : $X_L$
- $\dfrac{U_m}{I_m}\angle90=jX_L=jwL$
- P=0
- reactive power : $Q=I^2X_L$ (unit : var$
- C : $X_C$
- $\dfrac{U_m}{I_m}\angle-90=-jX_C=\dfrac{1}{jwC}$
- P=0
- $Q=-I^2X_C$
3.3 Impedance
$$Z=R+jX, {\rm unit :} \Omega$$
- series : same with resistance
- parallel : same with resistance
$$P=UI\cos\phi$$
- $\cos\phi$ : Power factor, $\Uparrow$ effective
- parallel C on L
$$Q=I^2X=I^2(X_L-X_C)=UI\sin\phi$$
$$S=UI=\sqrt{P^2+Q^2}$$
3.4 Three-phase electric power
phase differ 120 degree
$$u_1=U_m\sin wt\u_2=U_m\sin (wt-120)\u_3=U_m\sin(wt+120)$$
$$\dot{U_1}=U\angle 0\\dot{U_2}=U\angle 120\\dot{U_3}=U\angle -120$$
3.4.1 Y Configuration
4 wires : 3 phase and 1 neutral(0)
phase voltage : phase to 0
line voltage : phase 12, 23, 31
3.4.2 Load
1 phase load
3 phases load
when parity
$P=3U_pI_p\cos\phi_p=\sqrt 3U_LI_L\cos\phi_p$
p means load
$Q=\sqrt 3U_LI_L\sin\phi_p$
$S=3U_pI_p=\sqrt 3U_LI_L$
4. Transformer
4.1 Concepts
B : Magnetic Induction, 1 Teslas= 1 Wb/m2
H : magnetic field, 1 Amperes per meter A/m
$\Phi$ : magnetic flux, 1 Weber =1 Vs
$\mu=B/H$ : magnetic permeability
- $\mu_0=4\pi\times10^{-7} {\rm H/m}$ : vaccum
- $\mu_r=\frac{\mu}{\mu_0}$ : relative
4.2 Material
Saturation
- non magnetic material : linear
- magnetic material : non-linears
Hysteresis : B lagging change after H when AC
4.3 Ampere loop theorem
$$\oint Hdl=\sum I$$
$$H_x=\dfrac{NI}{2\pi x}$$
4.4 Iron core coil
$e=-N\dfrac{\Phi}{dt}\e_\sigma=-N\dfrac{d\Phi_\sigma}{dt}=-L_\sigma\dfrac{di}{dt}$
- $\Phi_\sigma$ : Leakage flux
$\Downarrow u=-e-e_\sigma+Ri$
$e=-N\frac{d}{dt}(\Phi\sin wt)=2\pi fN\Phi_m\sin(wt-90)$
$U\approx E=4.44fN\Phi_m$
$P=UI\cos \phi=I^2R+\Delta P_{Fe}$
- $\Delta P_{Fe}=\Delta P_h+\Delta P_e$
- $\Delta P_h$ hysteresis $\rightarrow$heat
- $\Delta P_e$ vortex
4.5 Transformer
- core
- primary winding
- secondary winding
when 0 load
$$\dfrac{U_1}{U_2}\approx\dfrac{E_1}{E_2}=\dfrac{N_1}{N_2}=K$$
4.5.1 3 phases transformer
4.5.2 Y/Y Y/Triangle
4.5.3 Load
$|Z_1|=K^2|Z_2|$
4.5.4 Parameters
- $U_{1N},U_{2N}$
- $I_{1N},I_{2N}$
4.5.5 Special Transformer
Autotransformer
VT Voltage t
CT Current t
4.5.6 Series and parallel
5. Three-phase asynchronous motor
5.1 Principle
$$n_0=\dfrac{60f_1}{p}$$
- slip rate : $s=\dfrac{n_0-n}{n_0}$
5.2 Mechanical properties
- rated torque $T_N=9550\dfrac{P_{2N}(\rm KW)}{n_N(\rm r/min)}$
- max torque $T_{max}$
- $s=s_m$
- Overload coefficient : $\lambda=\dfrac{T_{max}}{T_N}$
- starting torque $T_{st}$
- n=0
- s=1
5.3 Influence
$U_1$
$R_2$
5.4 Control
5.4.1 Starting
direct
low voltage (Squirrel cage motor)
Y-$\Delta$
auto coupling
- $I_{st}’=x^2I_{st},T_{st}’=x^2T_{st},$
add resistance (wound rotor induction motor)
5.4.2 Speed regulation
$n=(1-s)n_0=(1-s)\dfrac{60f_1}{p}$
- f
- p
- s
5.4.3 Stop
- power
- reverse
- feedback
6. Relay
6.1 Types
Combination Switch
button
- Normally closed button
- normally open button
- combination
Air Conditioner Contactor
Intermediate relay : for information PLC
thermal relay
6.2 Squirrel cage motor starting control circuit
- SB1 stop
- SB2 start