Electrotechnology - Electronic Technology - APS
1. Semiconductor
1.1 Type
Intrinsic semiconductor
Si,silicon
charge carrier : electrons & electron hole

carrier too less
extrinsic semiconductor
N : add P phosphorus
- electrons more

P : add B boron
- holes more

1.2 PN Junction
- Forward bias : with current
- Reverse bias : approximal no current

1.3 Diodes

- forward voltage : Si 0.7
reverse voltage
use for protect, regulate voltage
1.3.1 Zener diode

1.3.2 LED
1.3.3 Photodiode

1.4 Transistor

- PNP
- NPN
- base
- collector
- emitter
1.4.1 Principles

$\beta=\dfrac{I_{ce}}{I_{be}}$
1.4.2 Properties

- Dead V :
- Si : 0.5
- Ge : 0.1
- $U_{BE}$
- NPN Si 0.7V
- PNP Ge -0.3V

Ib<0
- none work
Ib>0, Ube>0.5
- linear area
- $I_C=\beta I_B$
- $U_{BE}=0.7V$
Ib>0,Ube<0.5
- $U_{BE}=0.7V$
- $U_{CE}=0.3V$
1.4.3 Parameters to work right
- $I_{CM}$ : or $\beta$ decrease, still work
- $U_{CEO}$ : maximum between c/e
2 Amplifying circuit
2.1 Common emitter amplifying circuit

Superposition Principle
2.2 Static analysis

2.3 Dynamic Analysis
2.3.1 Calculation

- $r_{be}=200+(1+\beta)\dfrac{26(\rm mV)}{I_E(m\rm mA)}\Omega$
- $I_E$ : emitter static value
- Gain : $A_u=-\beta\dfrac{R_C}{r_{be}}$
- Big input R : $R_B\/\/r_{be}$
- Small output R : $R_C$
2.3.2 Draw

Q too high$\rightarrow$Saturation distortion

Q too low$\rightarrow$Cutoff distortion

2.4 Voltage divider bias circuit

$R_E$ stabilize $I_C$

$C_E$ stabilize Q

2.5 Common collector amplifier circuit


2.6 Differential amplifier circuit
Zero drift, 2 direct connect

2.7 MOSFET
metal-oxide-semiconductor field-effect transistor

- Source
- Gate
- Drain

3. Operational Amplifier
CF741

3.1 Application
Positive-feedback applications

Negative-feedback applications : inverting amplifier

3.2 Add and Minus
Superposition Principle
- Add


- Minus

4. Feedback
Output connect with Input
Type

- local feedback
- Interstage feedback

- AC feedback
- negative : decrease amplify factor, increase other like factor stable
- DC feedback : stabilize Q

- series : compare with voltage
- parallel : compare with current

- voltage : stable output v, decrease input R
- current : stable output i, increase output R
- Negative feedback direct judgement

5 DC regulated power supply

5.1 Rectifier circuit
Single-phase half-wave rectifier circuit

- $U_O=\dfrac{\sqrt2}{\pi}U=0.45U$
- $I_D=I_O=0.45\dfrac{U}{R}$
- $U_{RM}=\sqrt2U$
Single-phase full-wave rectifier circuit

- $U_O=\dfrac{2\sqrt2}{\pi}U=0.9U$
- $I_O=0.9\dfrac{U}{R}\I_D=\dfrac{I_O}{2}$
- $U_{RM}=2\sqrt2U$
Single-phase bridge rectifier circuit

- $U_O=\dfrac{2\sqrt2}{\pi}U=0.9U$
- $I_O=0.9\dfrac{U}{R}\I_D=\dfrac{I_O}{2}$
- $U_{RM}=\sqrt2U$
5.2 RC Filter
choose $\tau=RC\ge(3\sim5)\dfrac{T}{2}$

5.3 Regulator circuit
use zener diodes

5.4 3 Terminal Voltage Regulator
- W7805 (W78XX)

- W117

6. Gate circuit
6.1 Signal
analog signal
digital signal

- rectangular signal
- apex signal
6.2 Logic gate
- and : Y=ABC
- or : Y=A+B+C
- not : $Y=\bar A$

Combination
- nand : $Y=\overline{ABC}$
- nor : $Y=\overline{A+B+C}$

6.3 TTL Gate Circuit


$Y=\overline{AB}$
- 74LS20 4in2gate
- 74LS00 2in4gate

6.4 Tri-state gate


6.5 Logical algebra

6.6 Logical function
$$Y=(A,B,C\cdots)$$
logic formula
logic state table

logic graph - carnot graph

simplify

6.7 Design
- Logic abstract
- Logic state table
- formula
- graph

6.8 Adder


6.7 Encoder & Decoder
8line-3line encoder 3line-8line74LS138

8421 decoder

74LS147 binary$\rightarrow$decimal
7. Multivibrator
7.1 Bistablemultivibrator
7.1.1 RS
- type1 [$\rm \overline{SR}$ NAND latch]


type2 [SR NOR latch]

controllable [Gated SR latch]

7.1.2 JK
2 controllable RS

1 question : 1 change in CP=1

- if $Q_{n-1}=0$ : S=J, R=0,$Q_n=1/Q_n=Q_{n-1}$
- if $Q_{n-1}=0$ : S=J, R=0,$Q_n=1/Q_n=Q_{n-1}$
7.1.3 D

7.1.4 T

T=1, T’ latch

7.2 Register
temporarily save data
digital r
- parallel input
- parallel output

shift r
- serial input
- parallel output

7.3 Counter
7.3.1 Binary

7.3.2 Decimal

7.3.3 74LS290
binary quinary decimal
any

7.4 555

