Complex Analysis - APS
1 Complex Number
$z=x+iy$
- $x={\rm Re}\ z$ : real part of z
- $y={\rm Im}\ z$ : imaginary part of z
- equal : $x_1=x_2,y_1=y_2$
1.1 Arithmetic
- +
- -
- *
/
$\bar{z}=x-iy$ : conjugate of z
${\rm Re}\ z=\dfrac{z+\bar z}{2}\quad {\rm Im}\ z=\dfrac{z-\bar z}{2}$
1.2 Geometry of Complex Numbers
$z=x+iy\Rightarrow (x,y)$
$C\Rightarrow R^2$
Rectangular coordinate (x,y)
Polar coordinate $(r,\theta)$
- Modulus : $|z|==\sqrt{x^2+y^2}=r$
- Argument : ${\rm Arg}\ z ==\theta\in (-\pi,\pi) $, not unique, $+2k\pi$
- principle value =${\rm arg} \ z$
1.2.1 Arithmetic
- + -
- * : $z_1z_2=r_1r_2(\cos\theta_{12}+i \sin\theta_{12})$
- power : $z^n=r^n(\cos n\theta+i\sin n\theta)$
- n-th root $=\sqrt[n]{z}(\cos \dfrac{\theta+2k\pi}{2}+i\sin \dfrac{\theta+2k\pi}{2})$
1.2.2 Eular Formular
$e^{i\theta}=\cos\theta+i\sin\theta$
$z=re^{i\theta}$
- $e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dots$
- $e^{i\theta}=1+i\theta+\dfrac{(i\theta)^2}{2!}+\dfrac{(i\theta)^3}{3!}+\dots\=(1-\dfrac{\theta^2}{2!}+\dots)+i(\theta-\dfrac{\theta^3}{2}+\dots)\=\cos\theta+i\sin \theta$
* : $z_1z_2=r_1e^{i\theta_1}r_2e^{i\theta_2}=r_1r_2e^{i(\theta_1+\theta_2)}$
power : $z^n=(re^{i\theta})^n=r^ne^{in\theta}$
1.2.3 Stereographic Projection
- P : $C\rightarrow S^2$
A : $\rightarrow P(A)$
- P is continuous
- P is a bijection between C and $S^2/{N}$
- $\lim\limits_{|A|\rightarrow \infty}P(A)=N\qquad P(\infty)=N$
P is a bijection between $C\cup {\infty}$ and $S^2$- $C\cup {\infty}$ : the extended complex plane $\bar{C}$
- $S^2$: Riemann Sphare
$C\cup {\infty}$
1.3 The sets contained in C
1.3.1 the curves in C
curve C : $f(x,y)=0$ or $\begin{cases}x& =x(t)\y&=y(t)\end{cases}$(parametric representation)
Line
A : $Ax\pm By\pm C=0$
$\Downarrow$ let $x=\dfrac{z+\bar z}{2},\ y=\dfrac{z-\bar z}{2i}$
$\bar bz+b\bar z+c=0\quad b\in C,c\in R$
B : $\begin{cases}x&=x_0+v_1t\y&=y_0+v_2t\end{cases}$
$\Downarrow$ add two equation together
$z=z_0+v_0t\quad z_0,v_0\in C,t\in R$
Circle
A : $(x-x_0)^2+(y-y_0)^2=r^2$
$\Downarrow$ $z_0=x_0+iy_0$
$z\bar z+\bar b\bar z+b\bar z+c=0\quad b\in C,c\in R,|b|^2-c>0$
B : $\begin{cases}x&=x_0+r\cos\theta\y&=y_0+r\sin\theta\end{cases}$
$\Downarrow$ $Z=Z_0+re^{i\theta}$
$z’=-r\sin\theta+ir\cos\theta=rie^{i\theta}$
- Simple : 1 to 1, has no self-intersection point($z(t_1)=z(t_2)\quad t_1=a,t_2=b$)
- Smooth : z(t) has a derivative for each t
- Pieceweise smooth : z(t) has a derivative in $(a,t_1)\cup(t_1,t_2)\cup(t_n,b)$
- Closed : $z(t_{start})=z(t_{end})$
- Orientation : t $\uparrow$
- positive orientation : counter-clockwise direction in simple closed curve
- negative orientation : clockwise direction
1.3.2 The domains in C
Note :the disk of radius r centered at $Z_0$ is the set ${z||z-z_0|<r}$ denoted by $B_r(z_0)$
- Interiior point of S
- S is open: each $p\in S$ is a interior point
- closure of S : $\bar S=S\cup\delta S$
- S is connected : each pair $z_1,z_2\in S$, curve c can connect $z_1,z_2$ and containted is S
Jordan’s Curve Theorem
plane $\rightarrow$ each simple closed curve C
$\rightarrow$ interior domain of C(bounded and connected) and exterior domain of C(boundless and connected)
Simple-connected : the interior domain of each simple closed curve $C\in D$ is also contained in D
or Multiply-connected
Let P be a property of some points ,D be a connected set, and p satisfy
- at least 1 point p = P holds at 1 point p at least
- P holds at p = P holds in some neighborhood of p
- P holds on ${Z_n}\quad n\in N$, and $\lim\limits_{n\rightarrow\infty}z_n=z_0\in D$ = P holds at $z_0$
then P must hold at each point of D
1.4 Functions with one complex variable
$f:D\subset C\rightarrow C\quad z\rightarrow f(z)$
$u={\rm Re}f(z)=u(x,y)\v={\rm Im}f(z)=v(x,y)$
$f(z)=u(x,y)+iv(x,y)$
2 Calculus of analytic function
2.1 The limit and continuity
Limit of a sequence ${z_n}$
for all z>0,if there exist some $N\ge0$, such that for each every n>N, $|z_n-A|<\varepsilon$ holds, then $A\rightarrow limits\ of\ {z_n}$, denoted by
$\lim\limits_{n\rightarrow\infty}z_n=A$
- $z_n=x_n+iy_n$, then $\lim\limits_{n\rightarrow\infty}z_n=\lim\limits_{n\rightarrow\infty}x_n+i\lim\limits_{n\rightarrow\infty}y_n$
The continuity of a function
- [limit]for all $\varepsilon>0$,if there exist some of $\delta >0$, such that for each $0<|z-z_0|<\delta$,$|f(z)-A|<\varepsilon$ holds, $A\rightarrow$ limit of f(z) as $z\rightarrow z_0$, denoted by $\lim\limits_{z\rightarrow z_0}=A$
- also $f(x)=u(x,y)+iv(x,y)$, then $\lim\limits_{z\rightarrow z_0}f(z)=\lim\limits_{(x,y)\rightarrow(x_0,y_0)}u(x,y)+i\lim\limits_{(x,y)\rightarrow(x_0,y_0)}v(x,y)$
- if $\lim\limits_{z\rightarrow z_0}f(z)$ exists, then must bounded
- if $\lim\limits_{z\rightarrow z_0}f(z)=A\neq0$, f(z) must be non zero in some punctured neighborhood of $z_0$
- if $\lim\limits_{z\rightarrow z_0}f(z)=f(z_0)$, then $f(z_0)$ is continuous at $z_0$, and if continuous in each $z\in D$, continuous in D
- f(z) continuous at $z_0$, iff u(x,y) and v(x,y) are continuous at $(x_0,y_0)$
- $\lim\limits_{z\rightarrow \infty}f(z)=A$ : for all $\varepsilon>0$, exist M>0, for each $|z|>m$, $|f(z)-A|<\varepsilon$ holds
- $\lim\limits_{z\rightarrow z_0}f(z)=\infty$, for all G>0, exists some $\delta>0$, for each $0<|z-z_0|<\delta$, $|f(z)|>G$
2.2 Derivative
Differentiable
$$\lim\limits_{\Delta z\rightarrow\infty}\dfrac{f(z+\Delta z)-f(z)}{\Delta z}$ exists $\Longleftrightarrow\lim\limits_{\Delta z\rightarrow 0^+}\dfrac{f(z+\Delta z)-f(z)}{\Delta z}=\lim\limits_{\Delta z\rightarrow 0^-}\dfrac{f(z+\Delta z)-f(z)}{\Delta z}$$
Cauchy -Riemann equation
If f(z) is differentiable at $z_0$, so $\dfrac{\partial u}{\partial x}=\dfrac{\partial v}{\partial y}\ \dfrac{\partial u}{\partial y}=-\dfrac{\partial v}{\partial x}$ holds zt $z_0$
- f(z) Differentiable at $z_0$ $\Longleftrightarrow$ u(x,y),v(x,y) differentiable & C-R equation holds at $z_0$
- f differentiable at each ponit in D, called analytic in D
- ………………..in some neighborhood of $z_0$, called analytic at $z_0$
2.3 Elementary Functions
2.3.1 Exponential function
$e^z=e^{x+iy}=e^x(\cos y+i\sin y)$
- continuous, analytic
- $e^{z+i2\pi}=e^z$
- $e^{z_1}e^{z_2}=e^{z_1+z_2}$
- range $C^* [C/{0}]$
- $(e^z)’=e^z$
2.3.2 Logarithm function
${\rm Ln} z= \ln|z|+i{\rm Arg}z$
- principle value : $\ln z=\ln|z|+i {\rm arg}z$
- continuous, analytic in $C/{z\in R|z\le0}$, right half plane
- $(\ln z)’=\dfrac{1}{z}$
- $\ln(z_1z_2)\neq \ln z_1+\ln z_2$
- range
2.3.3 Trigonometric function
$\cos \theta=\dfrac{e^{i\theta}+e^{-i\theta}}{2}, \sin\theta=\dfrac{e^{i\theta}-e^{-i\theta}}{2i}$
- $(\cos z)’=-\sin z, (\sin z)’=\cos z$
- range = C
2.3.4 Power function
$z^\alpha=e^{\alpha {\rm Ln}z}$ - $z^{\dfrac{q}{p}}$ has p value
- $z^\frac{1}{n}=\sqrt[n]{r}e^{i\frac{\theta+2k\pi}{n}} \quad k=0,1,,,n-1$
2.4 Complex Integral
$\int^b_af(x)dx=\lim\limits_{\Delta x\rightarrow0}\sum\limits^n_{k=0}f(\zeta_k)(x_{k+1}-x_k)\\Delta x=\max {x_{k+1}-x_k},a=x_0<x_1\dots<x_{n+1}=b$
Evaluating $\int_cf(z)dz$
- find a parameterization of C.$z(t),\alpha\le t\le\beta$
- $\int_c f(z)dz=\int^\beta_\alpha f(z(t))z’(t)dt$
Independence of Path
$\int_c f(z)dz$ independence of path in D
$\Longleftrightarrow$ $F’(z)=f(z)$ exists
then $\int_c f(z)dz=F(z_2)-F(z_1)$
2.5 Cauchy’s Theorems
Cauchy-Goursat Theorem
f(z) analytic in D, continuous up to $\partial D$
$\int_{\partial D}f(z)dz=\int_{\partial D}(u+iv)d(x+iy)=\int_{\partial D}udx-vdy+i\int_{\partial D}vdx+udy$
$\Downarrow$ Green function : $\int_{\partial D}Pdx+Qdy=\iint\limits_D(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})dxdy$
$\iint\limits_D(-\dfrac{\partial v}{\partial x}-\dfrac{\partial u}{\partial y})dxdy+i\iint\limits_D(\dfrac{\partial u}{\partial x}-\dfrac{\partial v}{\partial y})dxdy$
$\Downarrow$ C-R equation
0
$\int\limits_{\partial D}f(z)dz=0$
Cauchy’s Integral Formular
$\int\limits_{\partial D}\dfrac{f(z)}{z-z_0}dz=2\pi if(z_0)$
$\int\limits_{\partial D}\dfrac{f(z)}{(z-z_0)^n}dz=2\pi i\dfrac{f^{(n-1)}(z_0)}{(n-1)!}$
$=\sum\limits^k_{i=1}\sum\limits^{k}{j=1}\dfrac{A{i\alpha_j}}{(z-z_i)^{\alpha_j}}$
Mean Value Property
$B_r(z_0)\subset D$, and f(z) analytic in D, then $\dfrac{1}{2\pi}\int^{2\pi}_0f(z_0+re^{it})dz=f(z_0)$
The Fundamental Theorem of Algebra
Any polynomial with complex coefficients admits at least one root in C
Liouville’s Theorem
f analytic in C and bounded, then f is constant
Morera’s Theorem
$\int\limits_Cf(z)dz$ independent of Path in D, then f(z)
analytic in D
2.6 Harmonic function
h(x,y) a real-valued function in D, has continuous 2nd derivatives
$\dfrac{\partial^2 h}{\partial x^2}+\dfrac{\partial^2 h}{\partial y^2}=0$,called harmonic
- f analytic, u,v harmonic in D
Laplacian operators: $\Delta h==\dfrac{\partial^2 h}{\partial x^2}+\dfrac{\partial^2 h}{\partial y^2}$
harmonic conjugate pair : (u,v)
$\dfrac{\partial u}{\partial x}=\dfrac{\partial v}{\partial y}, \dfrac{\partial u}{\partial y}=-\dfrac{\partial v}{\partial x}$
- v conjugate harmonic function of u
(-v,u) harmonic,(v,u) not
the harmonic conjugate function of u in D, if exists, $v=\int-u_ydx+u_xdy+C$
Mean Value Property
h(x,y) harmonic in D, $B_r(z_0)\subset D$,$z_0=x_0+iy_0$, then
$h(x_0,y_0)=\dfrac{1}{2\pi}\int^{2\pi}_0h(x_0+r\cos t),y_0+r\sin t)dt$
- proof, to set $h(x,y)={\rm Re}f(x,y)$
Maximum Principle
h harmonic in D, continuous up to $\partial D$, then
h cannot achieve maximum and minimum in D, unless constant
Maximum Modulus Principle
f(z) analytic in D, continuous up to $\partial D$, then
$|f(z)|$ cannot achieve maximum and minimum in D, unless constant
Liouville’s Theorem
h(x,y) harmonic in $R^2$, if upper/lower bounded, constant
a harmonic function must be smooth $\Rightarrow\ \dfrac{\partial^{\alpha+\beta}h}{\partial^\alpha x\partial^\beta y}$ exists
3 Series
3.1 Power Series
${z_n}$ a sequence, $S_n=\sum\limits^n_0z_k$, ${S_n}$ also a sequence
if $\lim\limits_{n\rightarrow\infty}S_n$ exists, called $\sum\limits^n_0z_k$ convergent / converges, define
$\sum\limits^n_0z_k=\lim\limits_{n\rightarrow\infty}S_n$
otherweise, called $\sum\limits^n_0z_k$ divergent / diverges
- [ Geometric Series ] $z_k=q^k$, $S_n=\dfrac{1-q^{n+1}}{1-q}$
- $|q|<1, \lim\limits_{n\rightarrow\infty}S_n=\dfrac{1}{1-q}$, $\sum\limits^\infty_0q_k$ converges
- $|q|\ge1, \lim\limits_{n\rightarrow\infty}S_n$ not exists, $\sum\limits^\infty_0q_k$ diverges
- [ Harmonic Series ] $\sum\limits^\infty_1\dfrac{1}{k}$ divergent
- $\sum\limits^n_0z_k$ converges$\Longleftrightarrow$ $\lim\limits_{k\rightarrow\infty}z_k=0$
Comparison Test
${b_n}$ a positive sequence
- $|z_n|\le b_n $ for each n, $\sum\limits^\infty_1 b_n$ converges, so is $\sum\limits^\infty_1 z_n$
- $|z_n|\ge b_n $ for each n, $\sum\limits^\infty_1 b_n$ diverges, so is $\sum\limits^\infty_1 z_n$
Ratio Test
- If $\lim\limits_{n\rightarrow\infty}|\dfrac{z_{n+1}}{z_n}|<1$, then $\sum\limits^\infty_1 z_n$ converges
- If $\lim\limits_{n\rightarrow\infty}|\dfrac{z_{n+1}}{z_n}|>1$, then $\sum\limits^\infty_1 z_n$ dinverges
- =1, can’t judge
Root Test
$\lim\limits_{n\rightarrow\infty}\sqrt[n]{|z_n|}=q$
- If q<1, then $\sum\limits^\infty_1 z_n$ converges
- If q>1, then $\sum\limits^\infty_1 z_n$ dinverges
- =1, can’t judge
Power Series
$\sum\limits^\infty_0 c_n(z_n-z_0)^n \quad z_o\in C$
$\Downarrow \sqrt[n]{c_n}|z-z_0|$
- If $(\lim\limits_{n\rightarrow\infty}\sqrt[n]{c_n})|z-z_0|<1$, $\sum\limits^\infty_0 c_n(z_n-z_0)^n$ converges
- If $(\lim\limits_{n\rightarrow\infty}\sqrt[n]{c_n})|z-z_0|>1$, $\sum\limits^\infty_0 c_n(z_n-z_0)^n$ diverges
Radius of convergence–R : $\sum\limits^\infty_0 c_n(z_n-z_0)^n$ converges in the disk $|z-z_0|<R$
- $0\le R\le \infty$
- in the disk, $(\sum\limits^\infty_0 c_n(z_n-z_0)^n)’=\sum\limits^\infty_0 c_n n(z_n-z_0)^{n-1},\int \sum\limits^\infty_0 c_n(z_n-z_0)^ndz=\sum\limits^\infty_0 \int c_n(z_n-z_0)^ndz$
3.2 Taylor Series
Calculus : $f(x)=a_0+a_1(x-x_0)+\dots+a_n(x-x_n)^n+Remainder$
- $a_k=\dfrac{f^{(k)}(x_0)}{k!}$
[ Taylor Series ] if f(z) analytic at $z_0$
$$f(z)=\sum\limits^\infty_0a_n(z-z_0)^n\qquad in\ |z-z_0|<r, a_n=\dfrac{f^{(n)}(z_n)}{n!}$$
- $e^z=\sum\limits^\infty_0\dfrac{z^n}{n!}\quad z\in C$
- $\cos z=\sum\limits^\infty_0\dfrac{(-1)^n}{(2n)!}z^{2n}\quad z\in C$
- $\sin z=\sum\limits^\infty_0\dfrac{(-1)^n}{(2n+1)!}z^{2n+1}\quad z\in C$
- $\ln(1-z)=-\sum\limits^\infty_1\dfrac{z^n}{n}\quad |z|<1$
Zeros of analytic function
if $f(z_0)=0$, then $z_0$ is a zero of f(z)
f(z) analytic and non constant, all its zeros isolate
Uniqueness of analytic function
f(z),g(z) are analytic in D, and $f(z)\equiv g(z)$ in some open set contained in D, then $f(z)\equiv g(z)$ in D
Fibonacci sequence
3.3 Laurent Series
f(z) analytic in annulus $r_1<|z-z_0|<r_2\ (0\le r_1<r_2\le+\infty)$, can be written
$$f(z)=\sum\limits^{+\infty}_{-\infty}c_n(z-z_0)^n$$
where $c_n=\dfrac{1}{2\pi}\int_\gamma\dfrac{f(z)}{(z-z_0)^{n+1}}dz$
Example
3.4 Isolated Singular points
$z_0$ a singular point : f(z) fails to be analytic at $z_0$ (valid / not defined), also in some neighborhood ${0<|z-z_0|<\delta}$
- [ removable ] singular point : $c_n=0$ for all n<0
- $\lim\limits_{z\rightarrow z_0}f(z)$ exists
- [ pole ] $c_n=0$ for all n<-m, m>0, and $c_m\neq0$
- $\lim\limits_{z\rightarrow z_0}f(z)=\infty$
- [ essential ] other case
- $\lim\limits_{z\rightarrow z_0}f(z)$ not exists
- $\lim\limits_{z\rightarrow z_0}f(z)\neq A / \infty$
Let $f(z)=\frac{g(z)}{h(z)}$, g,h analytic at $z_0$, $h(z_0)=0$ and $h(z) {\rm not} \equiv 0$, let $z_0$ be the zero with multiply m of h(z)
- pole with order m of f(z) : $g(z_0)\neq 0$
- removable : $z_0$ is the zero with multiply n of g(z), $n\ge m$
- pole with order n-m : $z_0$ is the zero with multiply n of g(z), $n < m$
infinity $\infty$
f(z) analytic in ${|z|>R}$, then $\infty$ is a singular point of f(z)
All the singular points of f(z) in the extended complex plane $\bar C$ iff f(z) has finite many singular points
- and not essential iff f(z) is a rational function $\dfrac{P(z)}{Q(z)}$
Let laurent series of f(z) in $|z|>R$ be $f(z)=\sum\limits^{+\infty}_{-\infty} c_nz^n$
- [ removable ] singular point : $c_n=0$ for all n>0
- $\lim\limits_{z\rightarrow z_0}f(z)$ exists
- [ pole ] $c_n=0$ for all n>m, m>0, and $c_m\neq0$
- $\lim\limits_{z\rightarrow z_0}f(z)=\infty$
[ essential ] other case
- $\lim\limits_{z\rightarrow z_0}f(z)$ not exists
- $\lim\limits_{z\rightarrow z_0}f(z)\neq A / \infty$
0 is removable / pole / essential singular point of g(z) iff $\infty$ removable / pole / essential of $f(w)=g(\frac{1}{w})$
3.5 Residue Theorem
f(z) analytic in D except for finite many singular points,
C be a simple closed curve in D
no singular point on C
$$\int_cf(z)dz=\sum\limits^m_1\int\limits_{|z-z_k|=\varepsilon}f(z)dz=2\pi i \sum\limits^m_1 Res(f,z_k)$$
$\dfrac{1}{2\pi i}\int\limits_{|z-z_k|=\varepsilon}f(z)dz$ : the residue of f(z) at $z_c$, denoted as $Res(f,z_k)$
$Res(f,z_k)=C_{-1}$ : $f(z)=\sum\limits^{+\infty}_{-\infty}c_n(z-z_0)^n$ be laurent series in punctured neighborhood of $z_0$
[ Formula 1] $f(z)=\dfrac{g(z)}{(z-z_0)^{n+1}}$, g(z) analytic at $z_0$,
$Res(f,z_0)=\dfrac{g^{(n)}(z_0)}{n!}$
[ Formula 2 ] $f(z)=\dfrac{g(z)}{h(z)}$, $h(z_0)=0$ and $h’(z_0)\neq 0$,
$Res(f,z_0)=\dfrac{g(z_0)}{h’(z_0)}$
Infinity $\infty$
f(z) analytic in ${|z|>R}$, then $\infty$ is a singular point of f(z)
$Res(f,\infty)=-\dfrac{1}{2\pi i}\int\limits_{|z|=\rho}f(z)dz\quad \rho>R$
- $Res(f,\infty)=C_{-1}$ : $f(z)=\sum\limits^{+\infty}_{-\infty}c_nz^n$ in ${|z|>R}$
$\sum\limits^\infty_1Res(f,z_k)+Res(f,\infty)=0$ : f(z) analytic in $C/{z_1,\dots,z_n}$
$Res(f(z),\infty)=-Res(f(\dfrac{1}{w})\cdot\dfrac{1}{w^2},0)$
3.6 Application of Residue Theorem
3.6.1 Improper Integral of Rational Function
$\int\limits^{+\infty}_{-\infty}\dfrac{P(x)}{Q(x)}dx$, $\int\limits^{+\infty}_0\dfrac{P(x)}{Q(x)}dx$
- P(x),Q(x) are polynomials
- ${\rm deg} P(x)+2\le {\rm deg} Q(x)$
- $Q(x)\neq 0$ in $(-\infty, +\infty)\ /\ [0,+\infty) $
$$\int\limits^{+\infty}_{-\infty}\dfrac{P(x)}{Q(x)}dx=2\pi i \sum\limits^k_1Res(\dfrac{P(z)}{Q(z)},z_j)$$
$$\int\limits^{+\infty}_{-\infty}\dfrac{P(x)}{Q(x)}dx=–\sum\limits^k_1Res(\dfrac{P(z)}{Q(z)}\log z,z_j)$$
3.6.2 Fourier Type of Improper Integral
$\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\cos\alpha xdx$, $\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\sin\alpha xdx$, $a\in R$
- P(x),Q(x) are polynomials
- ${\rm deg}\ P(x)<{\rm deg}\ Q(x)$
- $Q(x)\neq 0$ for all $x\in R$
$${\rm Re}\ (\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i\alpha x}dx)=\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\cos\alpha xdx\{\rm Im}\ (\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i\alpha x}dx)=\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\sin\alpha xdx$$
when $\alpha<0$
$$(\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i\alpha x}dx)=\overline{\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i(-\alpha) x}dx}$$
3.6.3 $\int\limits^{2\pi}_0R(\cos \theta,\sin\theta)d\theta$
$$\int\limits^{2\pi}0R(\cos \theta,\sin\theta)d\theta=\int\limits{|z|=1}R\left(\dfrac{z+\frac{1}{z}}{2},\dfrac{z-\frac{1}{z}}{2i}\right)\dfrac{dz}{iz}$$
4 Integral Transform
4.1 Fourier Transform
f(x) a real-valued function in $(-\infty,+\infty)$
$$\hat{f}(w)=\int\limits^{+\infty}_{-\infty}f(x)e^{-iwx}dx\quad w\in R$$
- f(x) satisfies $\int\limits^{+\infty}_{-\infty}|f(x)|<+\infty\ \left(f\in L^1(-\infty,+\infty)\right)\\max{|{\rm Re}\ f(x)e^{-iwx}|,|{\rm Im}\ f(x)e^{-iwx}|}\le|f(x)|$, then $\hat f(x)$ is valid for all $w\in R$
- $f\in L^1(-\infty,+\infty)$, then $\hat f(w)$ continuous and $\lim\limits_{w\rightarrow\infty}\hat f(w)=0$
Properties
- $l_1,l_2\in R,f_1f_2\in L^1$, then $(l_1f_1+l_2f_2)^\land=l_1\hat{f_1}+l_2\hat{f_2}$
- Translation : $\alpha\in R, (f(x-\alpha))^\land=e^{-iw\alpha}\hat f(w)$
- Similarity : $k\in R^+, (f(kx))^\land=\dfrac{1}{|k|}\hat f(\dfrac{w}{k})$
- Convolution : $f_1,f_2\in L^1$, then $f_1\ast f_2=\int\limits^{+\infty}_{-\infty}f_1(x-y)f_2(y)dy$ also $\in L^1$, $(f_1\ast f_2)^\land=\hat{f_1}(w)\hat{f_2}(w)$
- Derivative : $f,f’\in L^1$ $\Longrightarrow$ $(f’(x))^\land=iw\hat f(w)$
Inverse Fourier Trandsform
$f\in L^1$ and $f’$ is Pieceweise continuous
$$\check{f}(x)=\dfrac{1}{2\pi}\int\limits^{+\infty}_{-\infty}\hat f(x)e^{iwx}dw$$
- $(f(x))^\land=F(w)$ $\Longrightarrow$ $(f(w))^\vee=\dfrac{1}{2\pi}F(-x)$
4.2 Laplace Transform
f(t) in $(0,+\infty)$
$$F(s)\ or\ \mathscr{L}(f(x))=\int\limits^{+\infty}_0f(t)e^{-st}dt$$
Properties
- $l_1,l_2\in R$, then $\mathscr{L}(l_1f_1+l_2f_2)=l_1\mathscr{L}(f_1)+l_2\mathscr{L}(f_2)$
- Translation : $t_0\in R, \mathscr{L}(f(t-t_0))=e^{-st_0}\mathscr{L}(f(t))$
- Similarity : $k\in R^+, \mathscr{L}(f(kt))=\dfrac{1}{k}\mathscr{L} (f(t))(\dfrac{s}{k})$
- $\mathscr{L}(e^{\alpha t}f(t))=\mathscr{L}(f(t))(s-\alpha)$
- Convolution :$\mathscr{L}(f_1\ast f_2)=\mathscr{L}(f_1)\mathscr{L}(f_2)$
- Derivative : $\mathscr{L}(f(t))=F(s)$ and $\lim\limits_{t\rightarrow 0^+}f(t)=f(0)$, $\mathscr{L}(f’(t))=sF(s)-f(0)$
Inverse Laplace Transform for Rational Function
P(s),Q(s) polynomial, and ${\rm deg}\ P(s)<{\rm deg}\ Q(s)$, then
$\dfrac{P(s)}{Q(s)}=\sum\limits^m_{j=1}\sum\limits^{n_j}{k=1}\dfrac{c{jk}}{(s-s_j)^k}$
$$\mathscr{L}^{-1}(\dfrac{P(s)}{Q(s)})=\sum\limits^m_{j=1}\sum\limits^{n_j}{k=1}\dfrac{c{jk}}{(k-1)!}t^{k-1}e^{s_jt}$$
4.3 Application
5. Conformal Mappings
5.1 Conformal Mappings
f(z) analytic in D, if$f’(z_0)\neq0\quad z_0\in D$, f is conformal at $z_0$
if conformal at each point in D, then conformal in D
- f conformal at $z_0$, f 1-1 locally
- f conformal in D, may not be 1-1 in D
- $f(z_0)=w$, $g(z)=\dfrac{1}{f(z)}$ conformal at $z_0$
- $f(\infty)=w$, $g(z)=f(\dfrac{1}{z})$ conformal at 0
- $f(\infty)=\infty$, $g(z)=\dfrac{1}{f(\frac{1}{z})}$ conformal at 0
5.2 Moebius Transformation
$f(z)=\dfrac{az+b}{cz+d}\quad (a,b,c,d\in C,\ \begin{vmatrix}a& b\c& d\end{vmatrix}\neq0)$
- $c\neq0$
$f(\infty)=\frac{a}{c},f(-\frac{d}{c})=\infty$, $f^{-1}(z)=\dfrac{dz-b}{-cz+a}$, f bijection in C - c=0
$f(z)=az+b, f(\infty)=\infty$, $f^{-1}=\frac{1}{a}z-\frac{b}{a}$, f bijection in $\bar{C}$
Properties
- Moebius Transformation are bijection in $\bar{C}$,inverse mapping also Moebius Transformation
- Composition of 2 MT is a MT
- MT are conformal in C
- f bijection $\bar{C}\rightarrow\bar{C}$, f conformal in $\bar{C}$, f must MT
Preservation of Circles
MT maps a line/circle to another line/circle in $\bar{C}$
Lemma : each MT is composition of :
- Translation : $w=z+z_0\quad z_0\in C$
- Rotation : $w=e^{i\theta}z\quad \theta\in R$
- Scaling : $w=kz\quad k>0$
- Inversion : $w=\frac{1}{z}\quad z_0\in C$
Crossing Ratio
$(z_0,z_1,z_2,z_3)=\dfrac{z_2-z_0}{z_2-z_1} : \dfrac{z_3-z_0}{z_3-z_1}$
Map unit circle to unit circle with $f(z_0)=0$
$f(z)=e^{i\theta}\dfrac{z-z_0}{1-\overline{z_0}z}$Map upper half plane to $|w|=1$, and $f(z_0)=0$
$f(z)=e^{i\theta}\dfrac{z-z_0}{z-\overline{z_0}}$
5.3 Other Conformal Mapping
- Power function $z^n, n=2,3,\cdots$
- $e^z$ and $\ln z$
Riemann’s Theorem
Each simply connected domain other than C, can be conformal onto unit disk