1. 1. 1 Complex Number
    1. 1.1. 1.1 Arithmetic
    2. 1.2. 1.2 Geometry of Complex Numbers
      1. 1.2.1. 1.2.1 Arithmetic
      2. 1.2.2. 1.2.2 Eular Formular
      3. 1.2.3. 1.2.3 Stereographic Projection
    3. 1.3. 1.3 The sets contained in C
      1. 1.3.1. 1.3.1 the curves in C
      2. 1.3.2. Line
      3. 1.3.3. Circle
      4. 1.3.4. 1.3.2 The domains in C
      5. 1.3.5. Jordan’s Curve Theorem
    4. 1.4. 1.4 Functions with one complex variable
  2. 2. 2 Calculus of analytic function
    1. 2.1. 2.1 The limit and continuity
      1. 2.1.1. Limit of a sequence ${z_n}$
      2. 2.1.2. The continuity of a function
    2. 2.2. 2.2 Derivative
      1. 2.2.1. Cauchy -Riemann equation
    3. 2.3. 2.3 Elementary Functions
      1. 2.3.1. 2.3.1 Exponential function
      2. 2.3.2. 2.3.2 Logarithm function
      3. 2.3.3. 2.3.3 Trigonometric function
      4. 2.3.4. 2.3.4 Power function
    4. 2.4. 2.4 Complex Integral
      1. 2.4.1. Independence of Path
    5. 2.5. 2.5 Cauchy’s Theorems
      1. 2.5.1. Cauchy-Goursat Theorem
      2. 2.5.2. Cauchy’s Integral Formular
      3. 2.5.3. Mean Value Property
      4. 2.5.4. The Fundamental Theorem of Algebra
      5. 2.5.5. Liouville’s Theorem
      6. 2.5.6. Morera’s Theorem
    6. 2.6. 2.6 Harmonic function
      1. 2.6.1. Mean Value Property
      2. 2.6.2. Maximum Principle
      3. 2.6.3. Maximum Modulus Principle
      4. 2.6.4. Liouville’s Theorem
  3. 3. 3 Series
    1. 3.1. 3.1 Power Series
      1. 3.1.1. Comparison Test
      2. 3.1.2. Ratio Test
      3. 3.1.3. Root Test
      4. 3.1.4. Power Series
    2. 3.2. 3.2 Taylor Series
      1. 3.2.1. Zeros of analytic function
      2. 3.2.2. Uniqueness of analytic function
      3. 3.2.3. Fibonacci sequence
    3. 3.3. 3.3 Laurent Series
    4. 3.4. 3.4 Isolated Singular points
      1. 3.4.1. infinity $\infty$
    5. 3.5. 3.5 Residue Theorem
      1. 3.5.1. Infinity $\infty$
    6. 3.6. 3.6 Application of Residue Theorem
      1. 3.6.1. 3.6.1 Improper Integral of Rational Function
      2. 3.6.2. 3.6.2 Fourier Type of Improper Integral
      3. 3.6.3. 3.6.3 $\int\limits^{2\pi}_0R(\cos \theta,\sin\theta)d\theta$
  4. 4. 4 Integral Transform
    1. 4.1. 4.1 Fourier Transform
      1. 4.1.1. Properties
      2. 4.1.2. Inverse Fourier Trandsform
    2. 4.2. 4.2 Laplace Transform
      1. 4.2.1. Properties
      2. 4.2.2. Inverse Laplace Transform for Rational Function
    3. 4.3. 4.3 Application
  5. 5. 5. Conformal Mappings
    1. 5.1. 5.1 Conformal Mappings
    2. 5.2. 5.2 Moebius Transformation
      1. 5.2.1. Properties
      2. 5.2.2. Preservation of Circles
      3. 5.2.3. Crossing Ratio
    3. 5.3. 5.3 Other Conformal Mapping
      1. 5.3.1. Riemann’s Theorem
  6. 6. Appendix

Complex Analysis - APS

| visited times

1 Complex Number

$z=x+iy​$

  • $x={\rm Re}\ z$ : real part of z
  • $y={\rm Im}\ z$ : imaginary part of z
  • equal : $x_1=x_2,y_1=y_2$

1.1 Arithmetic

  • +
  • -
  • *
  • /

  • $\bar{z}=x-iy$ : conjugate of z

    ${\rm Re}\ z=\dfrac{z+\bar z}{2}\quad {\rm Im}\ z=\dfrac{z-\bar z}{2}$

1.2 Geometry of Complex Numbers

$z=x+iy\Rightarrow (x,y)$

$C\Rightarrow R^2$

  • Rectangular coordinate (x,y)

  • Polar coordinate $(r,\theta)$

  • Modulus : $|z|==\sqrt{x^2+y^2}=r$
  • Argument : ${\rm Arg}\ z ==\theta\in (-\pi,\pi) $, not unique, $+2k\pi$
    • principle value =${\rm arg} \ z$

1.2.1 Arithmetic

  • + -
  • * : $z_1z_2=r_1r_2(\cos\theta_{12}+i \sin\theta_{12})$
  • power : $z^n=r^n(\cos n\theta+i\sin n\theta)$
  • n-th root $=\sqrt[n]{z}(\cos \dfrac{\theta+2k\pi}{2}+i\sin \dfrac{\theta+2k\pi}{2})$

1.2.2 Eular Formular

$e^{i\theta}=\cos\theta+i\sin\theta$

$z=re^{i\theta}$

  • $e^x=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dots$
  • $e^{i\theta}=1+i\theta+\dfrac{(i\theta)^2}{2!}+\dfrac{(i\theta)^3}{3!}+\dots\=(1-\dfrac{\theta^2}{2!}+\dots)+i(\theta-\dfrac{\theta^3}{2}+\dots)\=\cos\theta+i\sin \theta$
  • * : $z_1z_2=r_1e^{i\theta_1}r_2e^{i\theta_2}=r_1r_2e^{i(\theta_1+\theta_2)}$

  • power : $z^n=(re^{i\theta})^n=r^ne^{in\theta}$

1.2.3 Stereographic Projection

  • P : $C\rightarrow S^2$
  • A : $\rightarrow P(A)$

    1. P is continuous
    2. P is a bijection between C and $S^2/{N}$
    3. $\lim\limits_{|A|\rightarrow \infty}P(A)=N\qquad P(\infty)=N$
      P is a bijection between $C\cup {\infty}$ and $S^2$
      • $C\cup {\infty}$ : the extended complex plane $\bar{C}$
      • $S^2$: Riemann Sphare

    $C\cup {\infty}$

1.3 The sets contained in C

1.3.1 the curves in C

curve C : $f(x,y)=0$ or $\begin{cases}x& =x(t)\y&=y(t)\end{cases}$(parametric representation)

Line

  • A : $Ax\pm By\pm C=0$

    $\Downarrow$ let $x=\dfrac{z+\bar z}{2},\ y=\dfrac{z-\bar z}{2i}$

    $\bar bz+b\bar z+c=0\quad b\in C,c\in R$

  • B : $\begin{cases}x&=x_0+v_1t\y&=y_0+v_2t\end{cases}$

    $\Downarrow$ add two equation together

    $z=z_0+v_0t\quad z_0,v_0\in C,t\in R$

    Circle

  • A : $(x-x_0)^2+(y-y_0)^2=r^2$

    $\Downarrow$ $z_0=x_0+iy_0$

    $z\bar z+\bar b\bar z+b\bar z+c=0\quad b\in C,c\in R,|b|^2-c>0$

  • B : $\begin{cases}x&=x_0+r\cos\theta\y&=y_0+r\sin\theta\end{cases}$

    $\Downarrow$ $Z=Z_0+re^{i\theta}$

    $z’=-r\sin\theta+ir\cos\theta=rie^{i\theta}$

  1. Simple : 1 to 1, has no self-intersection point($z(t_1)=z(t_2)\quad t_1=a,t_2=b$)
  2. Smooth : z(t) has a derivative for each t
  3. Pieceweise smooth : z(t) has a derivative in $(a,t_1)\cup(t_1,t_2)\cup(t_n,b)$
  4. Closed : $z(t_{start})=z(t_{end})$
  5. Orientation : t $\uparrow$
    • positive orientation : counter-clockwise direction in simple closed curve
    • negative orientation : clockwise direction

1.3.2 The domains in C

Note :the disk of radius r centered at $Z_0$ is the set ${z||z-z_0|<r}$ denoted by $B_r(z_0)$

  1. Interiior point of S
  2. S is open: each $p\in S$ is a interior point
    • closure of S : $\bar S=S\cup\delta S$
  3. S is connected : each pair $z_1,z_2\in S$, curve c can connect $z_1,z_2$ and containted is S

Jordan’s Curve Theorem

plane $\rightarrow$ each simple closed curve C

$\rightarrow$ interior domain of C(bounded and connected) and exterior domain of C(boundless and connected)

Simple-connected : the interior domain of each simple closed curve $C\in D$ is also contained in D
or Multiply-connected

Let P be a property of some points ,D be a connected set, and p satisfy

  1. at least 1 point p = P holds at 1 point p at least
  2. P holds at p = P holds in some neighborhood of p
  3. P holds on ${Z_n}\quad n\in N$, and $\lim\limits_{n\rightarrow\infty}z_n=z_0\in D$ = P holds at $z_0$
    then P must hold at each point of D

1.4 Functions with one complex variable

$f:D\subset C\rightarrow C\quad z\rightarrow f(z)$

$u={\rm Re}f(z)=u(x,y)\v={\rm Im}f(z)=v(x,y)$

$f(z)=u(x,y)+iv(x,y)$

2 Calculus of analytic function

2.1 The limit and continuity

Limit of a sequence ${z_n}$

for all z>0,if there exist some $N\ge0$, such that for each every n>N, $|z_n-A|<\varepsilon$ holds, then $A\rightarrow limits\ of\ {z_n}$, denoted by

$\lim\limits_{n\rightarrow\infty}z_n=A$

  • $z_n=x_n+iy_n$, then $\lim\limits_{n\rightarrow\infty}z_n=\lim\limits_{n\rightarrow\infty}x_n+i\lim\limits_{n\rightarrow\infty}y_n$

The continuity of a function

  1. [limit]for all $\varepsilon>0$,if there exist some of $\delta >0$, such that for each $0<|z-z_0|<\delta$,$|f(z)-A|<\varepsilon$ holds, $A\rightarrow$ limit of f(z) as $z\rightarrow z_0$, denoted by $\lim\limits_{z\rightarrow z_0}=A​$
    • also $f(x)=u(x,y)+iv(x,y)$, then $\lim\limits_{z\rightarrow z_0}f(z)=\lim\limits_{(x,y)\rightarrow(x_0,y_0)}u(x,y)+i\lim\limits_{(x,y)\rightarrow(x_0,y_0)}v(x,y)$
    • if $\lim\limits_{z\rightarrow z_0}f(z)$ exists, then must bounded
    • if $\lim\limits_{z\rightarrow z_0}f(z)=A\neq0$, f(z) must be non zero in some punctured neighborhood of $z_0$
  2. if $\lim\limits_{z\rightarrow z_0}f(z)=f(z_0)$, then $f(z_0)$ is continuous at $z_0$, and if continuous in each $z\in D$, continuous in D
    • f(z) continuous at $z_0$, iff u(x,y) and v(x,y) are continuous at $(x_0,y_0)$
  3. $\lim\limits_{z\rightarrow \infty}f(z)=A$ : for all $\varepsilon>0$, exist M>0, for each $|z|>m$, $|f(z)-A|<\varepsilon$ holds
  4. $\lim\limits_{z\rightarrow z_0}f(z)=\infty$, for all G>0, exists some $\delta>0$, for each $0<|z-z_0|<\delta$, $|f(z)|>G$

2.2 Derivative

Differentiable

$$\lim\limits_{\Delta z\rightarrow\infty}\dfrac{f(z+\Delta z)-f(z)}{\Delta z}$ exists $\Longleftrightarrow\lim\limits_{\Delta z\rightarrow 0^+}\dfrac{f(z+\Delta z)-f(z)}{\Delta z}=\lim\limits_{\Delta z\rightarrow 0^-}\dfrac{f(z+\Delta z)-f(z)}{\Delta z}$$

Cauchy -Riemann equation

If f(z) is differentiable at $z_0$, so $\dfrac{\partial u}{\partial x}=\dfrac{\partial v}{\partial y}\ \dfrac{\partial u}{\partial y}=-\dfrac{\partial v}{\partial x}$ holds zt $z_0$

  • f(z) Differentiable at $z_0$ $\Longleftrightarrow$ u(x,y),v(x,y) differentiable & C-R equation holds at $z_0$
  • f differentiable at each ponit in D, called analytic in D
  • ………………..in some neighborhood of $z_0$, called analytic at $z_0$

2.3 Elementary Functions

2.3.1 Exponential function

$e^z=e^{x+iy}=e^x(\cos y+i\sin y)$

  • continuous, analytic
  • $e^{z+i2\pi}=e^z$
  • $e^{z_1}e^{z_2}=e^{z_1+z_2}$
  • range $C^* [C/{0}]$
  • $(e^z)’=e^z$

2.3.2 Logarithm function

${\rm Ln} z= \ln|z|+i{\rm Arg}z$

  • principle value : $\ln z=\ln|z|+i {\rm arg}z$
  • continuous, analytic in $C/{z\in R|z\le0}$, right half plane
  • $(\ln z)’=\dfrac{1}{z}$
  • $\ln(z_1z_2)\neq \ln z_1+\ln z_2$
  • range

2.3.3 Trigonometric function

$\cos \theta=\dfrac{e^{i\theta}+e^{-i\theta}}{2}, \sin\theta=\dfrac{e^{i\theta}-e^{-i\theta}}{2i}$

  • $(\cos z)’=-\sin z, (\sin z)’=\cos z$
  • range = C

    2.3.4 Power function

    $z^\alpha=e^{\alpha {\rm Ln}z}$
  • $z^{\dfrac{q}{p}}$ has p value
  • $z^\frac{1}{n}=\sqrt[n]{r}e^{i\frac{\theta+2k\pi}{n}} \quad k=0,1,,,n-1$

2.4 Complex Integral

$\int^b_af(x)dx=\lim\limits_{\Delta x\rightarrow0}\sum\limits^n_{k=0}f(\zeta_k)(x_{k+1}-x_k)\\Delta x=\max {x_{k+1}-x_k},a=x_0<x_1\dots<x_{n+1}=b$

Evaluating $\int_cf(z)dz$

  1. find a parameterization of C.$z(t),\alpha\le t\le\beta$
  2. $\int_c f(z)dz=\int^\beta_\alpha f(z(t))z’(t)dt$

Independence of Path

$\int_c f(z)dz$ independence of path in D

$\Longleftrightarrow$ $F’(z)=f(z)$ exists

then $\int_c f(z)dz=F(z_2)-F(z_1)$

2.5 Cauchy’s Theorems

Cauchy-Goursat Theorem

f(z) analytic in D, continuous up to $\partial D$

$\int_{\partial D}f(z)dz=\int_{\partial D}(u+iv)d(x+iy)=\int_{\partial D}udx-vdy+i\int_{\partial D}vdx+udy$

$\Downarrow$ Green function : $\int_{\partial D}Pdx+Qdy=\iint\limits_D(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y})dxdy$

$\iint\limits_D(-\dfrac{\partial v}{\partial x}-\dfrac{\partial u}{\partial y})dxdy+i\iint\limits_D(\dfrac{\partial u}{\partial x}-\dfrac{\partial v}{\partial y})dxdy$

$\Downarrow$ C-R equation

0

$\int\limits_{\partial D}f(z)dz=0$

Cauchy’s Integral Formular

$\int\limits_{\partial D}\dfrac{f(z)}{z-z_0}dz=2\pi if(z_0)$

$\int\limits_{\partial D}\dfrac{f(z)}{(z-z_0)^n}dz=2\pi i\dfrac{f^{(n-1)}(z_0)}{(n-1)!}$

$=\sum\limits^k_{i=1}\sum\limits^{k}{j=1}\dfrac{A{i\alpha_j}}{(z-z_i)^{\alpha_j}}$

Mean Value Property

$B_r(z_0)\subset D$, and f(z) analytic in D, then $\dfrac{1}{2\pi}\int^{2\pi}_0f(z_0+re^{it})dz=f(z_0)$

The Fundamental Theorem of Algebra

Any polynomial with complex coefficients admits at least one root in C

Liouville’s Theorem

f analytic in C and bounded, then f is constant

Morera’s Theorem

$\int\limits_Cf(z)dz$ independent of Path in D, then f(z)
analytic in D

2.6 Harmonic function

h(x,y) a real-valued function in D, has continuous 2nd derivatives

$\dfrac{\partial^2 h}{\partial x^2}+\dfrac{\partial^2 h}{\partial y^2}=0$,called harmonic

  • f analytic, u,v harmonic in D

Laplacian operators: $\Delta h==\dfrac{\partial^2 h}{\partial x^2}+\dfrac{\partial^2 h}{\partial y^2}$

harmonic conjugate pair : (u,v)
$\dfrac{\partial u}{\partial x}=\dfrac{\partial v}{\partial y}, \dfrac{\partial u}{\partial y}=-\dfrac{\partial v}{\partial x}$

  • v conjugate harmonic function of u
  • (-v,u) harmonic,(v,u) not

  • the harmonic conjugate function of u in D, if exists, $v=\int-u_ydx+u_xdy+C$

Mean Value Property

h(x,y) harmonic in D, $B_r(z_0)\subset D$,$z_0=x_0+iy_0$, then

$h(x_0,y_0)=\dfrac{1}{2\pi}\int^{2\pi}_0h(x_0+r\cos t),y_0+r\sin t)dt$

  • proof, to set $h(x,y)={\rm Re}f(x,y)$

Maximum Principle

h harmonic in D, continuous up to $\partial D$, then

h cannot achieve maximum and minimum in D, unless constant

Maximum Modulus Principle

f(z) analytic in D, continuous up to $\partial D$, then

$|f(z)|$ cannot achieve maximum and minimum in D, unless constant

Liouville’s Theorem

h(x,y) harmonic in $R^2$, if upper/lower bounded, constant

a harmonic function must be smooth $\Rightarrow\ \dfrac{\partial^{\alpha+\beta}h}{\partial^\alpha x\partial^\beta y}$ exists

3 Series

3.1 Power Series

${z_n}$ a sequence, $S_n=\sum\limits^n_0z_k$, ${S_n}$ also a sequence
if $\lim\limits_{n\rightarrow\infty}S_n$ exists, called $\sum\limits^n_0z_k$ convergent / converges, define
$\sum\limits^n_0z_k=\lim\limits_{n\rightarrow\infty}S_n$
otherweise, called $\sum\limits^n_0z_k$ divergent / diverges

  • [ Geometric Series ] $z_k=q^k$, $S_n=\dfrac{1-q^{n+1}}{1-q}$
    • $|q|<1, \lim\limits_{n\rightarrow\infty}S_n=\dfrac{1}{1-q}$, $\sum\limits^\infty_0q_k$ converges
    • $|q|\ge1, \lim\limits_{n\rightarrow\infty}S_n$ not exists, $\sum\limits^\infty_0q_k$ diverges
  • [ Harmonic Series ] $\sum\limits^\infty_1\dfrac{1}{k}$ divergent
  • $\sum\limits^n_0z_k$ converges$\Longleftrightarrow$ $\lim\limits_{k\rightarrow\infty}z_k=0$

Comparison Test

${b_n}$ a positive sequence

  • $|z_n|\le b_n $ for each n, $\sum\limits^\infty_1 b_n$ converges, so is $\sum\limits^\infty_1 z_n$
  • $|z_n|\ge b_n $ for each n, $\sum\limits^\infty_1 b_n$ diverges, so is $\sum\limits^\infty_1 z_n$

Ratio Test

  • If $\lim\limits_{n\rightarrow\infty}|\dfrac{z_{n+1}}{z_n}|<1$, then $\sum\limits^\infty_1 z_n$ converges
  • If $\lim\limits_{n\rightarrow\infty}|\dfrac{z_{n+1}}{z_n}|>1$, then $\sum\limits^\infty_1 z_n$ dinverges
  • =1, can’t judge

Root Test

$\lim\limits_{n\rightarrow\infty}\sqrt[n]{|z_n|}=q$

  • If q<1, then $\sum\limits^\infty_1 z_n$ converges
  • If q>1, then $\sum\limits^\infty_1 z_n$ dinverges
  • =1, can’t judge

Power Series

$\sum\limits^\infty_0 c_n(z_n-z_0)^n \quad z_o\in C$
$\Downarrow \sqrt[n]{c_n}|z-z_0|$

  • If $(\lim\limits_{n\rightarrow\infty}\sqrt[n]{c_n})|z-z_0|<1$, $\sum\limits^\infty_0 c_n(z_n-z_0)^n$ converges
  • If $(\lim\limits_{n\rightarrow\infty}\sqrt[n]{c_n})|z-z_0|>1$, $\sum\limits^\infty_0 c_n(z_n-z_0)^n$ diverges

Radius of convergence–R : $\sum\limits^\infty_0 c_n(z_n-z_0)^n$ converges in the disk $|z-z_0|<R$

  • $0\le R\le \infty$
  • in the disk, $(\sum\limits^\infty_0 c_n(z_n-z_0)^n)’=\sum\limits^\infty_0 c_n n(z_n-z_0)^{n-1},\int \sum\limits^\infty_0 c_n(z_n-z_0)^ndz=\sum\limits^\infty_0 \int c_n(z_n-z_0)^ndz$

3.2 Taylor Series

Calculus : $f(x)=a_0+a_1(x-x_0)+\dots+a_n(x-x_n)^n+Remainder$

  • $a_k=\dfrac{f^{(k)}(x_0)}{k!}$

[ Taylor Series ] if f(z) analytic at $z_0$
$$f(z)=\sum\limits^\infty_0a_n(z-z_0)^n\qquad in\ |z-z_0|<r, a_n=\dfrac{f^{(n)}(z_n)}{n!}$$

  • $e^z=\sum\limits^\infty_0\dfrac{z^n}{n!}\quad z\in C$
  • $\cos z=\sum\limits^\infty_0\dfrac{(-1)^n}{(2n)!}z^{2n}\quad z\in C$
  • $\sin z=\sum\limits^\infty_0\dfrac{(-1)^n}{(2n+1)!}z^{2n+1}\quad z\in C$
  • $\ln(1-z)=-\sum\limits^\infty_1\dfrac{z^n}{n}\quad |z|<1$

Zeros of analytic function

if $f(z_0)=0$, then $z_0$ is a zero of f(z)

f(z) analytic and non constant, all its zeros isolate

Uniqueness of analytic function

f(z),g(z) are analytic in D, and $f(z)\equiv g(z)$ in some open set contained in D, then $f(z)\equiv g(z)$ in D

Fibonacci sequence

3.3 Laurent Series

f(z) analytic in annulus $r_1<|z-z_0|<r_2\ (0\le r_1<r_2\le+\infty)$, can be written
$$f(z)=\sum\limits^{+\infty}_{-\infty}c_n(z-z_0)^n$$

where $c_n=\dfrac{1}{2\pi}\int_\gamma\dfrac{f(z)}{(z-z_0)^{n+1}}dz$

Example

3.4 Isolated Singular points

$z_0$ a singular point : f(z) fails to be analytic at $z_0$ (valid / not defined), also in some neighborhood ${0<|z-z_0|<\delta}$

  • [ removable ] singular point : $c_n=0$ for all n<0
    • $\lim\limits_{z\rightarrow z_0}f(z)$ exists
  • [ pole ] $c_n=0$ for all n<-m, m>0, and $c_m\neq0$
    • $\lim\limits_{z\rightarrow z_0}f(z)=\infty$
  • [ essential ] other case
    • $\lim\limits_{z\rightarrow z_0}f(z)$ not exists
    • $\lim\limits_{z\rightarrow z_0}f(z)\neq A / \infty$

Let $f(z)=\frac{g(z)}{h(z)}$, g,h analytic at $z_0$, $h(z_0)=0$ and $h(z) {\rm not} \equiv 0$, let $z_0$ be the zero with multiply m of h(z)

  1. pole with order m of f(z) : $g(z_0)\neq 0$
  2. removable : $z_0$ is the zero with multiply n of g(z), $n\ge m$
  3. pole with order n-m : $z_0$ is the zero with multiply n of g(z), $n < m$

infinity $\infty$

f(z) analytic in ${|z|>R}$, then $\infty$ is a singular point of f(z)

All the singular points of f(z) in the extended complex plane $\bar C$ iff f(z) has finite many singular points

  • and not essential iff f(z) is a rational function $\dfrac{P(z)}{Q(z)}$

Let laurent series of f(z) in $|z|>R$ be $f(z)=\sum\limits^{+\infty}_{-\infty} c_nz^n$

  • [ removable ] singular point : $c_n=0$ for all n>0
    • $\lim\limits_{z\rightarrow z_0}f(z)$ exists
  • [ pole ] $c_n=0$ for all n>m, m>0, and $c_m\neq0$
    • $\lim\limits_{z\rightarrow z_0}f(z)=\infty$
  • [ essential ] other case

    • $\lim\limits_{z\rightarrow z_0}f(z)$ not exists
    • $\lim\limits_{z\rightarrow z_0}f(z)\neq A / \infty$
  • 0 is removable / pole / essential singular point of g(z) iff $\infty$ removable / pole / essential of $f(w)=g(\frac{1}{w})$

3.5 Residue Theorem

f(z) analytic in D except for finite many singular points,

C be a simple closed curve in D

no singular point on C

$$\int_cf(z)dz=\sum\limits^m_1\int\limits_{|z-z_k|=\varepsilon}f(z)dz=2\pi i \sum\limits^m_1 Res(f,z_k)$$

$\dfrac{1}{2\pi i}\int\limits_{|z-z_k|=\varepsilon}f(z)dz$ : the residue of f(z) at $z_c$, denoted as $Res(f,z_k)$

  • $Res(f,z_k)=C_{-1}$ : $f(z)=\sum\limits^{+\infty}_{-\infty}c_n(z-z_0)^n$ be laurent series in punctured neighborhood of $z_0$

  • [ Formula 1] $f(z)=\dfrac{g(z)}{(z-z_0)^{n+1}}$, g(z) analytic at $z_0$,

    $Res(f,z_0)=\dfrac{g^{(n)}(z_0)}{n!}$

  • [ Formula 2 ] $f(z)=\dfrac{g(z)}{h(z)}$, $h(z_0)=0$ and $h’(z_0)\neq 0$,

    $Res(f,z_0)=\dfrac{g(z_0)}{h’(z_0)}$

Infinity $\infty$

f(z) analytic in ${|z|>R}$, then $\infty$ is a singular point of f(z)

$Res(f,\infty)=-\dfrac{1}{2\pi i}\int\limits_{|z|=\rho}f(z)dz\quad \rho>R$

  • $Res(f,\infty)=C_{-1}$ : $f(z)=\sum\limits^{+\infty}_{-\infty}c_nz^n$ in ${|z|>R}$
  • $\sum\limits^\infty_1Res(f,z_k)+Res(f,\infty)=0$ : f(z) analytic in $C/{z_1,\dots,z_n}$

  • $Res(f(z),\infty)=-Res(f(\dfrac{1}{w})\cdot\dfrac{1}{w^2},0)$

3.6 Application of Residue Theorem

3.6.1 Improper Integral of Rational Function

$\int\limits^{+\infty}_{-\infty}\dfrac{P(x)}{Q(x)}dx$, $\int\limits^{+\infty}_0\dfrac{P(x)}{Q(x)}dx$

  • P(x),Q(x) are polynomials
  • ${\rm deg} P(x)+2\le {\rm deg} Q(x)$
  • $Q(x)\neq 0$ in $(-\infty, +\infty)\ /\ [0,+\infty) $

$$\int\limits^{+\infty}_{-\infty}\dfrac{P(x)}{Q(x)}dx=2\pi i \sum\limits^k_1Res(\dfrac{P(z)}{Q(z)},z_j)$$

$$\int\limits^{+\infty}_{-\infty}\dfrac{P(x)}{Q(x)}dx=–\sum\limits^k_1Res(\dfrac{P(z)}{Q(z)}\log z,z_j)$$

3.6.2 Fourier Type of Improper Integral

$\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\cos\alpha xdx$, $\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\sin\alpha xdx$, $a\in R$

  • P(x),Q(x) are polynomials
  • ${\rm deg}\ P(x)<{\rm deg}\ Q(x)$
  • $Q(x)\neq 0$ for all $x\in R$

$${\rm Re}\ (\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i\alpha x}dx)=\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\cos\alpha xdx\{\rm Im}\ (\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i\alpha x}dx)=\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)}\sin\alpha xdx$$

when $\alpha<0$

$$(\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i\alpha x}dx)=\overline{\int\limits^{+\infty}{-\infty}\dfrac{P(x)}{Q(x)} e^{i(-\alpha) x}dx}$$

3.6.3 $\int\limits^{2\pi}_0R(\cos \theta,\sin\theta)d\theta$

$$\int\limits^{2\pi}0R(\cos \theta,\sin\theta)d\theta=\int\limits{|z|=1}R\left(\dfrac{z+\frac{1}{z}}{2},\dfrac{z-\frac{1}{z}}{2i}\right)\dfrac{dz}{iz}$$

4 Integral Transform

4.1 Fourier Transform

f(x) a real-valued function in $(-\infty,+\infty)$

$$\hat{f}(w)=\int\limits^{+\infty}_{-\infty}f(x)e^{-iwx}dx\quad w\in R$$

  • f(x) satisfies $\int\limits^{+\infty}_{-\infty}|f(x)|<+\infty\ \left(f\in L^1(-\infty,+\infty)\right)\\max{|{\rm Re}\ f(x)e^{-iwx}|,|{\rm Im}\ f(x)e^{-iwx}|}\le|f(x)|$, then $\hat f(x)$ is valid for all $w\in R$
  • $f\in L^1(-\infty,+\infty)$, then $\hat f(w)$ continuous and $\lim\limits_{w\rightarrow\infty}\hat f(w)=0$

Properties

  1. $l_1,l_2\in R,f_1f_2\in L^1$, then $(l_1f_1+l_2f_2)^\land=l_1\hat{f_1}+l_2\hat{f_2}$
  2. Translation : $\alpha\in R, (f(x-\alpha))^\land=e^{-iw\alpha}\hat f(w)$
  3. Similarity : $k\in R^+, (f(kx))^\land=\dfrac{1}{|k|}\hat f(\dfrac{w}{k})$
  4. Convolution : $f_1,f_2\in L^1$, then $f_1\ast f_2=\int\limits^{+\infty}_{-\infty}f_1(x-y)f_2(y)dy$ also $\in L^1$, $(f_1\ast f_2)^\land=\hat{f_1}(w)\hat{f_2}(w)$
  5. Derivative : $f,f’\in L^1$ $\Longrightarrow$ $(f’(x))^\land=iw\hat f(w)$

Inverse Fourier Trandsform

$f\in L^1$ and $f’$ is Pieceweise continuous
$$\check{f}(x)=\dfrac{1}{2\pi}\int\limits^{+\infty}_{-\infty}\hat f(x)e^{iwx}dw$$

  • $(f(x))^\land=F(w)$ $\Longrightarrow$ $(f(w))^\vee=\dfrac{1}{2\pi}F(-x)$

4.2 Laplace Transform

f(t) in $(0,+\infty)$
$$F(s)\ or\ \mathscr{L}(f(x))=\int\limits^{+\infty}_0f(t)e^{-st}dt$$

Properties

  1. $l_1,l_2\in R$, then $\mathscr{L}(l_1f_1+l_2f_2)=l_1\mathscr{L}(f_1)+l_2\mathscr{L}(f_2)$
  2. Translation : $t_0\in R, \mathscr{L}(f(t-t_0))=e^{-st_0}\mathscr{L}(f(t))$
  3. Similarity : $k\in R^+, \mathscr{L}(f(kt))=\dfrac{1}{k}\mathscr{L} (f(t))(\dfrac{s}{k})$
  4. $\mathscr{L}(e^{\alpha t}f(t))=\mathscr{L}(f(t))(s-\alpha)$
  5. Convolution :$\mathscr{L}(f_1\ast f_2)=\mathscr{L}(f_1)\mathscr{L}(f_2)$
  6. Derivative : $\mathscr{L}(f(t))=F(s)$ and $\lim\limits_{t\rightarrow 0^+}f(t)=f(0)$, $\mathscr{L}(f’(t))=sF(s)-f(0)$

Inverse Laplace Transform for Rational Function

P(s),Q(s) polynomial, and ${\rm deg}\ P(s)<{\rm deg}\ Q(s)$, then

$\dfrac{P(s)}{Q(s)}=\sum\limits^m_{j=1}\sum\limits^{n_j}{k=1}\dfrac{c{jk}}{(s-s_j)^k}$

$$\mathscr{L}^{-1}(\dfrac{P(s)}{Q(s)})=\sum\limits^m_{j=1}\sum\limits^{n_j}{k=1}\dfrac{c{jk}}{(k-1)!}t^{k-1}e^{s_jt}$$

4.3 Application

5. Conformal Mappings

5.1 Conformal Mappings

f(z) analytic in D, if$f’(z_0)\neq0\quad z_0\in D$, f is conformal at $z_0$
if conformal at each point in D, then conformal in D

  • f conformal at $z_0$, f 1-1 locally
  • f conformal in D, may not be 1-1 in D

  • $f(z_0)=w$, $g(z)=\dfrac{1}{f(z)}$ conformal at $z_0$
  • $f(\infty)=w$, $g(z)=f(\dfrac{1}{z})$ conformal at 0
  • $f(\infty)=\infty$, $g(z)=\dfrac{1}{f(\frac{1}{z})}$ conformal at 0

5.2 Moebius Transformation

$f(z)=\dfrac{az+b}{cz+d}\quad (a,b,c,d\in C,\ \begin{vmatrix}a& b\c& d\end{vmatrix}\neq0)$

  • $c\neq0$
    $f(\infty)=\frac{a}{c},f(-\frac{d}{c})=\infty$, $f^{-1}(z)=\dfrac{dz-b}{-cz+a}$, f bijection in C
  • c=0
    $f(z)=az+b, f(\infty)=\infty$, $f^{-1}=\frac{1}{a}z-\frac{b}{a}$, f bijection in $\bar{C}$

Properties

  1. Moebius Transformation are bijection in $\bar{C}$,inverse mapping also Moebius Transformation
  2. Composition of 2 MT is a MT
  3. MT are conformal in C
  • f bijection $\bar{C}\rightarrow\bar{C}$, f conformal in $\bar{C}$, f must MT

Preservation of Circles

MT maps a line/circle to another line/circle in $\bar{C}$

Lemma : each MT is composition of :

  1. Translation : $w=z+z_0\quad z_0\in C$
  2. Rotation : $w=e^{i\theta}z\quad \theta\in R$
  3. Scaling : $w=kz\quad k>0$
  4. Inversion : $w=\frac{1}{z}\quad z_0\in C$

Crossing Ratio

$(z_0,z_1,z_2,z_3)=\dfrac{z_2-z_0}{z_2-z_1} : \dfrac{z_3-z_0}{z_3-z_1}$

  1. Map unit circle to unit circle with $f(z_0)=0$

    $f(z)=e^{i\theta}\dfrac{z-z_0}{1-\overline{z_0}z}$

  2. Map upper half plane to $|w|=1$, and $f(z_0)=0$

    $f(z)=e^{i\theta}\dfrac{z-z_0}{z-\overline{z_0}}$

5.3 Other Conformal Mapping

  1. Power function $z^n, n=2,3,\cdots$
  2. $e^z$ and $\ln z$

Riemann’s Theorem

Each simply connected domain other than C, can be conformal onto unit disk

Appendix