Fundamentals of Robotics and Artificial Intelligence - APS
It will mainly delivery contents of the world’s leading robotics and AI institutions and their specific research directions, fundamental concepts of robotics and AI, essential mathematics for robotics, structure of robots (fundamental structure of different types of robots), robot kinematics and rigid multibody system dynamics, expression and reasoning of knowledge, problem solving on the basis of searching, artificial neural network and deep learning, basic control and system integration, AI used on robots, etc.
1. Mainstream institutions of robotics and AI and
their characteristics
1.1 CMU Carneige Mellon University- Robotics Institute
Manipulation, Locomotion, control,ML & CV
HERE
1.2 MIT-CSAIL
- AI / System / Theory
- Artificial Muscle
1.3 Stanford- SAIL
- CV & NLP
1.4 Google
- AlphaGo
1.5 Waseda University
humanoid robot
1.6 Nagoya University
surgical robots
2. Robotics &AI
2.1 R-Concept
- Mechanical Eng.
- Eng. Physics Material science
- Design, Analysis, Manufacturing, Maintenance
- Electrical Eng.
- Electricity, Electronics, Electromagnetism
- Power, Drive, Sensor, Control
- Computer Eng.
- Theory, Experimentation, Eng.
- Computation, ML, CV,
2.2 R-Allpication
- Dangerous Enviroment
- Areas human can’t survive
- Manufacturing process
2.3 AI-Concept
1.0 act like human
- Turing Test
2.0 think like human
- cognitive science
- decision make, problem solve, learning
3.0 think rationaly
4.0 think intelligently
2.4 Three laws of Robotics
- [Law 0] humanity the first
- [Law I] no harm to human
- [Law II] obey the orders, under Law I
- [Law III] protect itself, under Law I &II
2.5 Example of Salto to Galago
3. Fundamental mathematics for robotics
3.1 Vector[a b c d]
- d: Scale
- $a\cdot b=xx+yy+zz$
- $a\times b=||$
- Plane: $P=[a\quad b\quad c\quad d]$
- to 0: $-\dfrac{d}{m}, m=\sqrt{a^2+b^2+c^2}$
- Vector: $PV=0,on\PV>0,above\PV<0,under$
$v=Hu\H=Trans(a, b, c)=\left(\begin{matrix}1&0&0&a\0&1&0&b\0&0&1&c\0&0&0&1\end{matrix}\right)$
3.2 Rotational Transformation
3.3 Robot coordinates
3.3.1 DOF degree of freedom
$T_6=A_1 A_2 A_3 A_4 A_5A_6\\quad=\left(\begin{matrix}n_x&o_x&a_x&p_x\n_y&o_y&a_y&p_y\n_z&o_z&a_z&p_z\0&0&0&1\end{matrix}\right)$
3.3.2 Euler Angle
$Euler(\varphi,\theta,\psi)=Rot(z,\varphi)Rot(y,\theta)Rot(z,\psi)$
- X: Yaw
- Y: Pitch
- Z: Roll
3.3.3 Coordinates
Cartesian Coordinate
$T=T_{cart}=\left(\begin{matrix}1&0&0&p_x\0&1&0&p_y\0&0&1&p_z\0&0&0&1\end{matrix}\right)$
Cylindrical Coordinate
Spherical Coordinate
Chain Coordinate
3.4 Position Kinematics
Rotate joints
Prismatic joints
Example
$A_n=Rot(z,\theta_n)Trans(0,0,d_n)Trans(a_n,0,0)Rot(x,a_n)$
3.5 Velocity Kinematics
$\dot{x}=J(q)\dot{q}\x=\left[\begin{matrix}v\w\end{matrix}\right]\\left[\begin{matrix}v\w\end{matrix}\right]=\left[\begin{matrix}J_{l1}&J_{l2}&\dots&J_{ln}\J_{a1}&J_{a2}&\dots&J_{an}\end{matrix}\right]\left[\begin{matrix}\dot{q_1}\\dot{q_2}\\dots\\dot{q_n}\end{matrix}\right]$
4. Knowledge representation and reasoning
4.1 Definition
- Descriptive k
- Judgment k
Procedural k
Object-level
- Meta-level
4.2 Knowledge representation methods
4.2.1 Predicate Logic
- P, Q, R, S
- T, F
4.2.2 Production representation
$P\rightarrow Q $: If P then Q
deterministic factual knowledge
- (object, property, value)
- (relationship, object1, object2)
uncertainty factual knowledge
- (object, property, value, credibility)
- (relationship, object1, object2, credibility)
Production system components
4.2.3 Semantic network representation
NLP Natural Language Processing
(Node 1, Arc, Node 2)
Relationship
- Category: kind / member
- Inclusive: part
- Attribute: have /can
- Time: before / after
- Locational
- Similarity
- Causal
- Composition
4.2.4 The frame Representation
4.3 Deterministic reasoning
4.3.1 Definetion
- Deductive r
- Inductive r
Default r
Deterministic r
Uncertainly
Heuristic r
- Non-heuristic
4.3.2 Logic basis
- predicate logic
4.3.3 Natural deductive reasoning
4.4 Uncertainty knowledge representation and reasoning
Randomness
Fuzzy
IF E THEN R (CF,$\lambda$)
- CF: Certainly Factor
Fuzzy logic control
Incompleteness of knowledge
5. Search to slove
And-Or Graph
decomposition the problem(TV)
TSP Traveling Salesman Problem
- each city once
- shortest route
- GA Genetic Algorithm
- PSO Particle Swarm Optimization
6. Artificial Neural Network
weight and biases to minimize the cost function
- neuro: number
- get the cost function: Gradient Descent
Least-squares fitting (最小二乘法拟合)
$z=Xw+e$
mean-square error(MSE-均方误差)
Adaptive linear systems
- Non-linear adaptive units
- Single Neuron Neural Network
- BP Backpropagation Neural Network
- 3 layers (1 hidden)
- change the weight and biases from the result