Theory of Machines and Mechanisms - APS

| visited times

1. Mechanism structure

Machinery is the summary of machine and mechanism

1.1 Basic contept

  • Link : move unit
  • Kinematic pair : connect the link
  • Kinematic chain : Link+ KinematicP
    • closed & open
    • planar & spatial
  • Mechanism
    • Fixed link
    • Driven link
    • Driving link

1.2 Pair

  • DOF : f=6-s
  • Constraint of kinematic pair : 1 - 5,to Class I - V pairs
  • Pairing element

Classificatiton

  • High pair : point, line
  • Low pair : face
  • Closed

    • form-closed
    • force-closed

    • Revolute pair

    • Sliding pair
    • Helical pair
    • Spherical pair
  • Planar kinematic pair

  • Spatial kinematic pair

1.3 Kinematic diagram of mechanism

1.4 DOF

$f=3n-(2p_l+p_h)$

  • compound hinges
  • passive dof : dont affect the mechanism 滚子
  • redundant constraint 重复

1.5 Assur group

DOF=0

  • Binary group : 2l+3pl
  • Tenary group : 4l+6pl

Substitute higher pair mechanism by lower pair mechanism

2. Kinematic Analysis

2.1 Instantaneous center of velocity

  • absolute
  • relative

  • RP : at this

  • SP : $\infty$
  • Ph

    • Pure rolling : at touch p
    • Not : at common normal
  • Kennedy-Aronhold theorem : 3 points velocity

    $P_{13}=P_{12}+P_{23}\\quad=P_{14}+P_{43}$

2.2 Vector graphic method

  • One link

    • velocity vector polygon of mechanism
    • acceleration vector polygon
    • velocity image of link
    • acceleration image of link
  • Use same p on 2 links

3. Balance

3.1 Rigid rotor

  • static balance - single plane balance

    $F_I=mw^2r\\sum F=F_I+F_b=0$

    • mass-radius product
  • dynamic balance - 2 plane balance

    $\sum F=0\\sum M=0$

4. Mechainery

  • Starting period

    $W_d=W_r+E$

  • Steady motion period

    $W_d’=W_r’$

  • Stopping period

    $E=-W_r’$

4.1 Equation of motion

4.2 Equivalent dynamic model

  • equivalent moment of inertia
  • equivalent moment
  • equivalent link
  • equivalent mass
  • equivalent force

4.3 Speed fluctuation

  • increment of work

  • decrement of work

  • Coefficient of non-uniformity of operating velocity of machinery

    $\delta=\dfrac{w_{max}-w_{min}}{w_m}$

  • Flywheel

5. Linkage mechanism-4 bar linkages

5.1 Basic mode of 4 bar linkages

  • crank : 360, revolute pair of revolving motion
  • rocker : some area, revolute pair of swing motion

  • Crank-rocker mechanism
  • Double-crank mechanism
    • parallel-c m
    • antip-c m
  • Double-rocker mechanism

5.2 Other mode

  • Slider-crank m

    • Offset sc m

    • Centric sc m

    • double sc m

    • scotch-yoke m

  • Guide-bar m

    • Crank and rotating gb m
    • Crank and swing gb m
  • Crank and swing slider m

5.3 Crank ?

  • $L_{min}+L_{max}\le \sum L_{rest}$
  • Lmin near the revolute p

5.4 Quick-return motion

  • Crank angle between the 2 limit position
  • Coefficient of travel speed variation

5.5 Pressure angle

  • $\gamma$ : transmission angle
  • dead point : $\gamma=0$ , +flywheel, 2 different

5.6 Design

  • analytic method

  • Drawing

6.Cam mechanism

  • Cam
  • Follower

6.1 Classification

  • Plate cam
  • Cylinder cam

  • Knife-edge follower

  • Roller f
  • Flat-faced f

  • Force-drive cam m

  • Positive cam m

6.2 Motion

  • $r_0$ : base circle
  • $h$ : actuating travel
  • $\delta_0$ : Motion angle of at

    • $\delta _{01}$ : far angle of repose
    • $\delta_{0}’$ : motion angle for return travel
    • $\delta_{02}$ : near angle of repose
  • Constant velocity curve : rigid impulse, order 1

  • Constant acceleration and deceleration motion curve : soft impulse, order 2

  • Polynomial motion

  • Simple harmonic motion : soft impulse

  • Sine acceleration motion

6.3 Design

  1. Cam pitch curve
  2. cam contour

6.4 Pressure angle

$F=G/[\cos(\alpha+\varphi_1)-(l+2b/l)\sin(\alpha+\varphi_1)\tan\varphi_2]$

7.Gear mechanism

7.1 Classification

  • parallel axis
  • intersecting axis
  • interlaced shaft

  • spur

  • helical
  • spiral bevel

  • External gear

  • Internal gear

7.2 Fundamental Law of Gear-Tooth Action

Velocity Ratio: $i_{12}=\dfrac{w_1}{w_2}=\dfrac{O_2P}{O_1P}$

  • Pitch piont
  • Pitch circle
  • Pitch line

7.3 Involute Curve

  • generating line BK=arc AB
  • B : instantaneous center
  • BK is tangent to circle
  • no involute curve in the base circle

involute function : $\theta_k=tan\alpha_k-a_k$

  • $\theta$ : evolving angle
  • $\alpha$ : pressure angle

Feature

  • i constant
  • force along the line of action啮合线
  • separability

7.4 Spur Gear

  • $r_a$ : addendum circle
  • $r_f$ : dedendum circle
  • $s$ : tooth thickness
  • $e$ : space width
  • $p=e+s$ : circular pitch
    • reference circle
  • $h_a$ : addendum
  • $h_f$ : dedendum
  • $h=h_a+h_f$ : tooth depth

7.4.1 Standard gear

  • $z$ : number of teeth
  • $m=\dfrac{p}{\pi}$ : module
  • $d=mz$ : diameter of reference circle
  • $\alpha=20^\circ$ : pressure angle,
  • $r_b=rcos\alpha$
  • $e=s=\pi m/2$
  • $c=c^*m$ : Clearance
  • $h_a^*=1$ : addendum factor, $h_a=h_a^*m$
  • $c^*=0.25$ : clearance factor, $h_f=(h_a^*+c^*)m​$
  • $a=m(z_1+z_2)/2=r_1+r_2​$ : $a\uparrow,\alpha’>\alpha,c’>c,a\downarrow​$ can’t assemble

7.4.2 Correct Meshing

  • $m_1=m_2$
  • $\alpha_1=\alpha_2$

7.4.3 Contact ratio

$B_1B_2<N_1N_2$

$\varepsilon_\alpha=\dfrac{B_1B_2}{p_b}\ge[\varepsilon_\alpha]$

  • 1.1-1.4
  • $p_b=pcos\alpha$
  • $\varepsilon_\alpha=[z_1(tan\alpha_{a1}-tan\alpha’)+z_2(tang\alpha_{a2}-tan\alpha’)]/2/\pi$

7.4.4 Generating method

Tooth cutting : number of teeth too less

$z_{min}=\dfrac{2h_a^*}{sin^2\alpha}$

7.4.5 Modifying method

To use less 17, then $s\neq e$,modified gear

also, too small and not enough strength

  • $x$ : modification coefficient
  • $s=(\frac{\pi}{2}+2xtan\alpha)m$
  • $e=(\frac{\pi}{2}-2xtan\alpha)m$
  • $h_f=(h_a^*+c^*-x)m$
  • $h_a=(h_a^*+x)m$

Equal displacement gear

  • small, positive
  • bigger, negtive

7.5 Helical Gear

  • $\beta$ : helix angle
  • Normal plane
    • $m_n=m_t\cos\beta$
    • $p_n= \pi m_n=\pi m_t\cos\beta$
    • $\tan\alpha_n=\tan\alpha_t\cos\beta$
    • $d=zm_t=zm_n/\cos\beta$
    • $a=m_n(z_1+z_2)/\cos\beta$
  • $\tan\beta_b=\tan\beta\cos\alpha_t$

7.5.1 Correct meshing

  • $\beta_1=\beta_2$
  • $m_{n1}=m_{n2}$
  • $\alpha_{n1}=\alpha_{n2}$

7.5.2 Contact Ratio

$\varepsilon_\gamma=\varepsilon_\alpha+\varepsilon_\beta$ :thumbsup:

  • $\varepsilon_\alpha=[z_1(tan\alpha_{at1}-tan\alpha_t’)+z_2(tang\alpha_{at2}-tan\alpha_t’)]/(2\pi)$
  • $\varepsilon_\beta=B\sin\beta/(\pi m_n)$

7.5.3 Virtual gear

$z_v=z/\cos^3\beta\Rightarrow\quad z_{min}=z_{vmin}\cos^3\beta$:thumbsup:

8. Gear Train

8.1 Classification

  • fixed axis gt
  • epicyclic gt
    • sun gear
    • planetary gear
    • planetary carrier
    • DOF=2 : differential gt
    • DOF=1 : planetary gt
  • compound planetary gt

8.2 Fixed axis

$i=\dfrac{\sum z_{DrivenGears}}{\sum z_{DriveGears}}$

  • +,-

8.3 Epicyclic gt

+$w_H\Rightarrow$ inverted gt