Mechanical Vibration - APS

| visited times

1. Basic Concept

1.1 Definition

  • Mechanical Vibration: system moving forward and backward between the Balanced position
  • system
  • input
  • response

1.2 Basic question

  • vibration analysis[this] : system,input $\rightarrow$ response
  • system identification : i. r$\rightarrow$s
  • Load identification : s,r $\rightarrow$ i
    • Steps for vibration analysis
  • Mechanical model
  • Mathematical model : Motion differential equation
  • solve Motion differential equation
  • get engineering information
  • test for verification

1.3 Elements

  • Inertial component : mass,m,J
  • Elastic component : stiffness, k
  • Damping element : Damping coefficient,c

1.4 Classification

  • Component

    • Discrete component: Discrete system

      • 1 dof : $f(x,\dot{x},\ddot{x},t)=0$
      • 2 dof
      • multiple dof
    • Linear Component : Linear System

      • m : $F=m\ddot{x}$

      • k : $F=k(x_1-x_2)$

      • c : $F=c(\dot{x_1}-\dot{x_2})$

    • Time-varying system : parameter change with time

    • Time invariant system
      • Constant coefficient differential equation
  • Force

    • free vibration
      • Homogeneous equation
    • forced vibration
      • Nonhomogeneous equation

1.5 Simple harmonic vibration

$x=x_u\sin(wt\pm \theta)=Im[x_ue^{j(wt+\theta)}]$

2. 1 DOF

Generalized equation : at any time

$m\ddot{x}+c\dot{x}+kx=f(t)$

  • Generalized coordinates
  • Initial conditions

2.1 Free vibration

$m\ddot{x}+kx=0$

  • set $x=x_u\sin(wt+ \theta)$, generalized equation
  • $w_n=\sqrt{\dfrac{k}{m}}$ : Natural frequency

2.2 Damping vibration

$m\ddot{x}+c\dot{x}+kx=0$

  • Characteristic equation : $m\lambda^2+c\lambda+k=0$

  • Characteristic root : $\lambda_{1,2}=-\dfrac{c}{2m}\pm\sqrt{(\dfrac{c}{2m}^2)-\dfrac{k}{m}}\=(-\zeta\pm\sqrt{\zeta^2-1})w_n$

    • =0, $c=2\sqrt{mk}=c_e$ , Critical damping

    • $\zeta=\dfrac{c}{c_e}=\dfrac{c}{2\sqrt{mk}}$,Damping ratio

  • Underdamped system : $\zeta<1$

    • Real solution
    • $x(t)=Ae^{-\zeta w_nt}\sin(w_d+\theta)$
    • $w_d=\sqrt{1-\zeta^2}w_n$
  • Overdamped system : $\zeta>1$
  • Critical damping system : $\zeta=1$
    • $x(t)=(c_1+c_2t)e^{-w_nt}$

2.3 Forced damping vibration

$m\ddot{x}+c\dot{x}+kx=f(t)\ \Downarrow\ [m(jw)^2+cjw+k]X=P \\Downarrow\ Z(w)X=P\\Downarrow\X=H(w)P​$

$H(w)=h_ue^{j\theta}=\dfrac{1}{Z(w)}=\dfrac{1}{(k-w^2m)+jwc}$

  • $h_u=\dfrac{1}{\sqrt{(k-w^2m)^2+(wc)^2}}$
  • $h(w)$ : Amplitude-frequency characteristic
  • $\theta(w)$ : Phase frequency characteristic

$\beta=\dfrac{x_u}{x_{st}}=h_uk=\dfrac{1}{\sqrt{(1-\lambda^2)^2+(2\zeta\lambda)^2}}$

  • $\lambda=\dfrac{w}{w_c}$
  • $Re[\beta]$ :real number frequency characteristics
  • $Im[\beta]$ : Imaginary number frequency characteristics

  • Resonance : $\zeta=0.707$

3. Non-harmonic forced vibration

  • Frequency domain analysis

3.1 Fourier

  • Fourier expanation

    $x(t)=\dfrac{1}{2}a_0+\sum\limits_1^\infty(a_k\cos w_kt+b_k\sin w_k t)$

  • Fourier transform

3.2 Steady state response

superposition of linear system

3.3 Transient response

  • Unit pulse function

  • Duhamel’s integral

  • $x(t)=x_{free}(t)+x_d(t)$

4.Application for 1dof system

4.1 Vibration isolation

  • double direction effect

  • Passive : stop the transmission

  • Active : stop the base

Vibration isolation coefficient

$R_{TR}=|H_{f,f_T}(w)|=\dfrac{|k+jwc|}{|k-w^2m+jwc|}$

Active and passive are same with same H(w)

4.2 Vibration absorber

  • absorb at some particular frequency

4.3 Inertial force excitation

u(t)=esinwt

5. 2 DOF

  • Mass matrix : [m]
  • Damping matrix : [c]
  • Stiffness matrix : [k]

5.1 No damping vibration

  • Impedance matrix : [Z]

  • Frequency equation : no zero in generalized function

  • 2dof : 2 natural frequency

    • first : lower , basic frequency
    • second : higher
  • Mode shape

  • mode shape matrix

  • solution

  • EXAMPLE

5.2 Steady state response

  • Frequency response matrix

6.Multiple DOF

Lagrange equation

  • Generalized coordinates

  • Generalized force : Virtual displacement method, virtual work,$p_i=\dfrac{\delta W_i}{\delta q_i}$

  • kinetic energy : $E_k=\frac{1}{2}{\dot{q}}^T[m]{\dot{q}}$

  • Potential energy : $E_p=\frac{1}{2}{q}^T[k]{q}$

  • Dissipative function : $E_D=\frac{1}{2}{\dot{q}}^T[c]{\dot{q}}$

  • example

6.1 No damping system

$[m]{\ddot{x}}+[k]{x}={0}\\Downarrow {x}={u}\sin(w_nt+\theta)\ [k]{u}=w^2_n[m]{u}$

  • Generalized eigenvalue problem : $[A]{u}=\lambda[B]{u}$
  • Frequency function : $\Delta (w_n)=\det ([Z(w_n)])$
  • Impedance function : $[Z(w_n)]=-w_n^2[m]+[k]$
  • Feature vector : ${u}r$, $[Z(w{nr})]{u}_r={0}$

    • $w_{nr}$ : natural frequency
  • Modal matrix : $[u]=[{u}_i]$
  • General solution : ${x(t)}=[u]{a_r\cos w_{nr}t+b_r\sin w_{nr}t}$

  • example

  • Initial conditions : ${a}=[u]^{-1}{x_0}$

6.2 Primary coordinate

  • Master mass matrix
  • Master stiffness matrix

  • Primary coordinate : ${y}=[u]{x}$

  • Regular vibration vector : ${\mu}_r=\dfrac{1}{M_r}{u}_r$

  • Regular coordinate : ${x}=[\mu]{\eta}$

  • example

6.3 Multiple DOF forced steady state response

Modal method