Processing math: 100%


Mechanical Vibration - APS

| visited 31 times

1. Basic Concept

1.1 Definition

  • Mechanical Vibration: system moving forward and backward between the Balanced position
  • system
  • input
  • response

1.2 Basic question

  • vibration analysis[this] : system,input response
  • system identification : i. rs
  • Load identification : s,r i
    • Steps for vibration analysis
  • Mechanical model
  • Mathematical model : Motion differential equation
  • solve Motion differential equation
  • get engineering information
  • test for verification

1.3 Elements

  • Inertial component : mass,m,J
  • Elastic component : stiffness, k
  • Damping element : Damping coefficient,c

1.4 Classification

  • Component

    • Discrete component: Discrete system

      • 1 dof : f(x,˙x,¨x,t)=0
      • 2 dof
      • multiple dof
    • Linear Component : Linear System

      • m : F=m¨x

      • k : F=k(x1x2)

      • c : F=c(˙x1˙x2)

    • Time-varying system : parameter change with time

    • Time invariant system
      • Constant coefficient differential equation
  • Force

    • free vibration
      • Homogeneous equation
    • forced vibration
      • Nonhomogeneous equation

1.5 Simple harmonic vibration

x=xusin(wt±θ)=Im[xuej(wt+θ)]

2. 1 DOF

Generalized equation : at any time

m¨x+c˙x+kx=f(t)

  • Generalized coordinates
  • Initial conditions

2.1 Free vibration

m¨x+kx=0

  • set x=xusin(wt+θ), generalized equation
  • wn=km : Natural frequency

2.2 Damping vibration

m¨x+c˙x+kx=0

  • Characteristic equation : mλ2+cλ+k=0

  • Characteristic root : λ1,2=c2m±(c2m2)km\=(ζ±ζ21)wn

    • =0, c=2mk=ce , Critical damping

    • ζ=cce=c2mk,Damping ratio

  • Underdamped system : ζ<1

    • Real solution
    • x(t)=Aeζwntsin(wd+θ)
    • wd=1ζ2wn
  • Overdamped system : ζ>1
  • Critical damping system : ζ=1
    • x(t)=(c1+c2t)ewnt

2.3 Forced damping vibration

m¨x+c˙x+kx=f(t)  [m(jw)2+cjw+k]X=PDownarrow Z(w)X=PDownarrow\X=H(w)P

H(w)=huejθ=1Z(w)=1(kw2m)+jwc

  • hu=1(kw2m)2+(wc)2
  • h(w) : Amplitude-frequency characteristic
  • θ(w) : Phase frequency characteristic

β=xuxst=huk=1(1λ2)2+(2ζλ)2

  • λ=wwc
  • Re[β] :real number frequency characteristics
  • Im[β] : Imaginary number frequency characteristics

  • Resonance : ζ=0.707

3. Non-harmonic forced vibration

  • Frequency domain analysis

3.1 Fourier

  • Fourier expanation

    x(t)=12a0+1(akcoswkt+bksinwkt)

  • Fourier transform

3.2 Steady state response

superposition of linear system

3.3 Transient response

  • Unit pulse function

  • Duhamel’s integral

  • x(t)=xfree(t)+xd(t)

4.Application for 1dof system

4.1 Vibration isolation

  • double direction effect

  • Passive : stop the transmission

  • Active : stop the base

Vibration isolation coefficient

RTR=|Hf,fT(w)|=|k+jwc||kw2m+jwc|

Active and passive are same with same H(w)

4.2 Vibration absorber

  • absorb at some particular frequency

4.3 Inertial force excitation

u(t)=esinwt

5. 2 DOF

  • Mass matrix : [m]
  • Damping matrix : [c]
  • Stiffness matrix : [k]

5.1 No damping vibration

  • Impedance matrix : [Z]

  • Frequency equation : no zero in generalized function

  • 2dof : 2 natural frequency

    • first : lower , basic frequency
    • second : higher
  • Mode shape

  • mode shape matrix

  • solution

  • EXAMPLE

5.2 Steady state response

  • Frequency response matrix

6.Multiple DOF

Lagrange equation

  • Generalized coordinates

  • Generalized force : Virtual displacement method, virtual work,pi=δWiδqi

  • kinetic energy : Ek=12˙qT[m]˙q

  • Potential energy : Ep=12qT[k]q

  • Dissipative function : ED=12˙qT[c]˙q

  • example

6.1 No damping system

[m]¨x+[k]x=0Downarrowx=usin(wnt+θ) [k]u=w2n[m]u

  • Generalized eigenvalue problem : [A]u=λ[B]u
  • Frequency function : Δ(wn)=det([Z(wn)])
  • Impedance function : [Z(wn)]=w2n[m]+[k]
  • Feature vector : ${u}r,[Z(w{nr})]{u}_r={0}$

    • wnr : natural frequency
  • Modal matrix : [u]=[ui]
  • General solution : x(t)=[u]arcoswnrt+brsinwnrt

  • example

  • Initial conditions : a=[u]1x0

6.2 Primary coordinate

  • Master mass matrix
  • Master stiffness matrix

  • Primary coordinate : y=[u]x

  • Regular vibration vector : μr=1Mrur

  • Regular coordinate : x=[μ]η

  • example

6.3 Multiple DOF forced steady state response

Modal method