Mechanical Vibration - APS
1. Basic Concept
1.1 Definition
- Mechanical Vibration: system moving forward and backward between the Balanced position
- system
- input
- response
1.2 Basic question
- vibration analysis[this] : system,input $\rightarrow$ response
- system identification : i. r$\rightarrow$s
- Load identification : s,r $\rightarrow$ i
- Steps for vibration analysis
- Mechanical model
- Mathematical model : Motion differential equation
- solve Motion differential equation
- get engineering information
- test for verification
1.3 Elements
- Inertial component : mass,m,J
- Elastic component : stiffness, k
- Damping element : Damping coefficient,c
1.4 Classification
Component
Discrete component: Discrete system
- 1 dof : $f(x,\dot{x},\ddot{x},t)=0$
- 2 dof
- multiple dof
Linear Component : Linear System
m : $F=m\ddot{x}$
k : $F=k(x_1-x_2)$
c : $F=c(\dot{x_1}-\dot{x_2})$
Time-varying system : parameter change with time
- Time invariant system
- Constant coefficient differential equation
Force
- free vibration
- Homogeneous equation
- forced vibration
- Nonhomogeneous equation
- free vibration
1.5 Simple harmonic vibration
$x=x_u\sin(wt\pm \theta)=Im[x_ue^{j(wt+\theta)}]$
2. 1 DOF
Generalized equation : at any time
$m\ddot{x}+c\dot{x}+kx=f(t)$
- Generalized coordinates
- Initial conditions
2.1 Free vibration
$m\ddot{x}+kx=0$
- set $x=x_u\sin(wt+ \theta)$, generalized equation
- $w_n=\sqrt{\dfrac{k}{m}}$ : Natural frequency
2.2 Damping vibration
$m\ddot{x}+c\dot{x}+kx=0$
Characteristic equation : $m\lambda^2+c\lambda+k=0$
Characteristic root : $\lambda_{1,2}=-\dfrac{c}{2m}\pm\sqrt{(\dfrac{c}{2m}^2)-\dfrac{k}{m}}\=(-\zeta\pm\sqrt{\zeta^2-1})w_n$
=0, $c=2\sqrt{mk}=c_e$ , Critical damping
$\zeta=\dfrac{c}{c_e}=\dfrac{c}{2\sqrt{mk}}$,Damping ratio
Underdamped system : $\zeta<1$
- Real solution
- $x(t)=Ae^{-\zeta w_nt}\sin(w_d+\theta)$
- $w_d=\sqrt{1-\zeta^2}w_n$
- Overdamped system : $\zeta>1$
- Critical damping system : $\zeta=1$
- $x(t)=(c_1+c_2t)e^{-w_nt}$
2.3 Forced damping vibration
$m\ddot{x}+c\dot{x}+kx=f(t)\ \Downarrow\ [m(jw)^2+cjw+k]X=P \\Downarrow\ Z(w)X=P\\Downarrow\X=H(w)P$
$H(w)=h_ue^{j\theta}=\dfrac{1}{Z(w)}=\dfrac{1}{(k-w^2m)+jwc}$
- $h_u=\dfrac{1}{\sqrt{(k-w^2m)^2+(wc)^2}}$
- $h(w)$ : Amplitude-frequency characteristic
- $\theta(w)$ : Phase frequency characteristic
$\beta=\dfrac{x_u}{x_{st}}=h_uk=\dfrac{1}{\sqrt{(1-\lambda^2)^2+(2\zeta\lambda)^2}}$
- $\lambda=\dfrac{w}{w_c}$
- $Re[\beta]$ :real number frequency characteristics
- $Im[\beta]$ : Imaginary number frequency characteristics
- Resonance : $\zeta=0.707$
3. Non-harmonic forced vibration
- Frequency domain analysis
3.1 Fourier
Fourier expanation
$x(t)=\dfrac{1}{2}a_0+\sum\limits_1^\infty(a_k\cos w_kt+b_k\sin w_k t)$
- Fourier transform
3.2 Steady state response
superposition of linear system
3.3 Transient response
Unit pulse function
Duhamel’s integral
$x(t)=x_{free}(t)+x_d(t)$
4.Application for 1dof system
4.1 Vibration isolation
double direction effect
Passive : stop the transmission
- Active : stop the base
Vibration isolation coefficient
$R_{TR}=|H_{f,f_T}(w)|=\dfrac{|k+jwc|}{|k-w^2m+jwc|}$
Active and passive are same with same H(w)
4.2 Vibration absorber
- absorb at some particular frequency
4.3 Inertial force excitation
u(t)=esinwt
5. 2 DOF
- Mass matrix : [m]
- Damping matrix : [c]
- Stiffness matrix : [k]
5.1 No damping vibration
Impedance matrix : [Z]
Frequency equation : no zero in generalized function
2dof : 2 natural frequency
- first : lower , basic frequency
- second : higher
Mode shape
mode shape matrix
solution
EXAMPLE
5.2 Steady state response
- Frequency response matrix
6.Multiple DOF
Lagrange equation
Generalized coordinates
Generalized force : Virtual displacement method, virtual work,$p_i=\dfrac{\delta W_i}{\delta q_i}$
kinetic energy : $E_k=\frac{1}{2}{\dot{q}}^T[m]{\dot{q}}$
Potential energy : $E_p=\frac{1}{2}{q}^T[k]{q}$
Dissipative function : $E_D=\frac{1}{2}{\dot{q}}^T[c]{\dot{q}}$
example
6.1 No damping system
$[m]{\ddot{x}}+[k]{x}={0}\\Downarrow {x}={u}\sin(w_nt+\theta)\ [k]{u}=w^2_n[m]{u}$
- Generalized eigenvalue problem : $[A]{u}=\lambda[B]{u}$
- Frequency function : $\Delta (w_n)=\det ([Z(w_n)])$
- Impedance function : $[Z(w_n)]=-w_n^2[m]+[k]$
Feature vector : ${u}r$, $[Z(w{nr})]{u}_r={0}$
- $w_{nr}$ : natural frequency
- Modal matrix : $[u]=[{u}_i]$
General solution : ${x(t)}=[u]{a_r\cos w_{nr}t+b_r\sin w_{nr}t}$
example
Initial conditions : ${a}=[u]^{-1}{x_0}$
6.2 Primary coordinate
- Master mass matrix
- Master stiffness matrix
Primary coordinate : ${y}=[u]{x}$
Regular vibration vector : ${\mu}_r=\dfrac{1}{M_r}{u}_r$
Regular coordinate : ${x}=[\mu]{\eta}$
example
6.3 Multiple DOF forced steady state response
Modal method