Theoretical Mechanics B - APS
1 Statics
1.1 Force
- modulus
- direction
- effect point
constraint
- Soft body constraint : belt
- Smooth contact surface : gear meshing
- Hinge
- Chain constraint
- Fixed end constraint
- bearing
1.2 Concurrent force system
all force start at one point
{∑Fx=0sumFy=0sumFz=0
1.3 Torque & Couple
Torque
- point
Mo(F)=r×F
axis : parallel part = 0
Mz(F)=(r×F)⋅k
sum : vector sum
Couple
two force same length, reverse direction, the effective line parallel, the combination of the two torque
M=rBA×F
put any where
{∑Mx=0sumMy=0sumMz=0
1.4 Any force system
rigid body
1.4.1 Force translation
1.4.2 Simplify
M=∑Mo(Fi)mathbfFR=∑Fi
- FR: major vector, free of position
- M : major torque
result
- FR=0,M≠0 : change with position
- FR≠0,M=0
- FR≠0,M≠0
- perpendicular : sum force to another O
- parallel : spiral Force
- same direction : dextral
- reverse : sinistral
- combination : to another point of spiral force
1.4.3 Distributed load
1.4.4 Center of gravity
1.4.5 Force system balance
1.5 Application
1.5.1 Truss
Node : 2 unknown can resolved
zero chain
Cutting section : 3 unknown can resolved
1.5.2 Friction
static friction : Fmax=fsFN
- fs : coefficient of friction
kinetic friction : Fk=fkFN
- fk<fs
angle of friction : tanθ=fs
- auto lock
Overturn or slide
Roll resistance : Mf=δFN
- pure roll Fs<Fmax,M=Mf
2 Kinematics
2.1 Particle
Vector
Rectangular coordinates
Natural coordinates
2.1.1 Velocity composition
- Implicated motion
- Relative motion
→va=→ve+→vr
2.1.2 Acceleration composition
- Coriolis acceleration
→aa=→ae+→ar+→ac
- →ac=2→we×→vr
2.2 Rigid Body
- translation
- rotation
Plane movement
velocity
- speed synthesis
- speed projection
- instantaneous center
acceleration : →aB=→aA+→aBAn+→aBAt
3 Dynamics
3.1 Particle motion differential equation
Newton law
- Inertial system
- Non-inertial system
3.2 Centroid motion theorem
two inference
3.3 Momentum theorem
- momentum p
- impulse I
3.4 Angular momentum principle
- Moment of inertia : J
- Parallel axis theorem
- Radius of gyration : ρ
- angular momentum
- unit : kgm2/s
Rigid body fixed axis rotation differential equation
Jzα=∑Mezi
Rigid body plane motion differential equation
{macx=m¨xc=∑Fxi\macy=m¨yc=∑Fyi\Jcα=Jc¨φ=∑Mci
3.5 Kinetic energy theorem
3.5.1 Work for different force
- Weight : W=∫(−G)dz=G(z1−z2)
- Spring : W=k2(δ21−δ22)
- Gravity : W=Gm0m(1r2−1r1)
- Rotation : W=φ2∫φ2mdφ
3.5.2 Kinetic energy
- Translation : T=12mv2
- Fixed axis rotation : T=12Jzw2
- Combination : T=12mv2c+12Jcw2
3.5.3 Kinetic energy theorem
T2−T1=∑Wi
3.5.4 Potential Energy and Mechanical energy conservation
- Potential E
- weight: V=mg(z−z0)
- spring : V=12kδ2
- gravity : V=−Gm0mr
- Mechanical energy conservation : T1+V1=T2+V2
3.6 Collision
Recovery factor : e=v′2n−v′1nv1n−v2n,0≤e≤1
impulse and angular momentum
mv′c−mvc=∑Iei\Lc2−Lc1=∑Mc(Iei)
Heart collision
- e=1
- e=0
collision center : h=Jzma
- a : rotation center to centroid
3.7 D’Alembert’s principle
add inertial force, make dynamic problem to statics problem
Inertial force system simplify
Major vector : FI=−mac
Major torque : MO(FI)=−dLOdt
3.8 Virtual work principle
generalized coordinates : make sure the position→dof
3.8.1 Virtual displacement
small movement δr
geometry : instantaneous center
analytic : get position function
3.8.2 Principle of virtual work
δW=n∑1Fiδri=0
3.8.3 Generalized force balance
lock other virtual displacement
Qj=δWjδqj
3.9 General kinetic equation & Lagrange equation
General kinetic equation
n∑1[(Fix−mi¨xi)δxi+(Fiy−mi¨yi)δyi+(Fiz−mi¨zi)δzi]=0
Lagrange equation
ddt⋅∂T∂˙qj−∂T∂qj=Qj=−∂V∂qj
ddt⋅∂L∂˙qj−∂L∂qj=0,L=T−V