Theoretical Mechanics B - APS
1 Statics
1.1 Force
- modulus
- direction
- effect point
constraint
- Soft body constraint : belt
- Smooth contact surface : gear meshing
- Hinge
- Chain constraint
- Fixed end constraint
- bearing

1.2 Concurrent force system
all force start at one point
$$\begin{cases}\sum F_x=0\\sum F_y=0\\sum F_z=0\end{cases}$$
1.3 Torque & Couple
Torque
- point
$\mathbf{M_o(F)}=\mathbf r\times \mathbf F$

- axis : parallel part = 0 - $$M_z(\mathbf F)=(\mathbf r \times\mathbf F)\cdot \mathbf k$$ 
- sum : vector sum 
Couple
two force same length, reverse direction, the effective line parallel, the combination of the two torque
$$\mathbf M=\mathbf r_{BA}\times F$$
put any where

$$\begin{cases}\sum M_x=0\\sum M_y=0\\sum M_z=0\end{cases}$$
1.4 Any force system
rigid body
1.4.1 Force translation

1.4.2 Simplify
$$\mathbf M=\sum \mathbf M_o(\mathbf F_i)\\mathbf F_R=\sum \mathbf F_i$$
- $\mathbf F_R$: major vector, free of position
- $\mathbf M$ : major torque

result
- $\mathbf F_R=0, \mathbf M\neq 0$ : change with position
- $\mathbf F_R\neq0, \mathbf M=0$
- $\mathbf F_R\neq0, \mathbf M\neq0$- perpendicular : sum force to another O
- parallel : spiral Force- same direction : dextral
- reverse : sinistral
 
- combination : to another point of spiral force
 

1.4.3 Distributed load

1.4.4 Center of gravity

1.4.5 Force system balance

1.5 Application
1.5.1 Truss
- Node : 2 unknown can resolved  - zero chain  
 
- Cutting section : 3 unknown can resolved  
1.5.2 Friction
- static friction : $F_{max}=f_sF_N$ - $f_s$ : coefficient of friction
 
- kinetic friction : $F_k=f_kF_N$ - $f_k<f_s$
 
- angle of friction : $\tan\theta=f_s$ - auto lock
 
- Overturn or slide  
- Roll resistance : $M_f=\delta F_N$  - pure roll $F_s<F_{max}, M=M_f$
 
2 Kinematics
2.1 Particle
- Vector 
- Rectangular coordinates 
- Natural coordinates 

2.1.1 Velocity composition
- Implicated motion
- Relative motion
$$\overrightarrow{v_a}=\overrightarrow{v_e}+\overrightarrow{v_r}$$
2.1.2 Acceleration composition
- Coriolis acceleration
$$\overrightarrow{a_a}=\overrightarrow{a_e}+\overrightarrow{a_r}+\overrightarrow{a_c}$$
- $\overrightarrow{a_c}=2\overrightarrow{w_e}\times\overrightarrow{v_r}$

2.2 Rigid Body
- translation
- rotation

- Plane movement - velocity - speed synthesis
- speed projection
- instantaneous center
  
- acceleration : $\overrightarrow{a_B}=\overrightarrow{a_A}+\overrightarrow{a_{BAn}}+\overrightarrow{a_{BAt}}$ 
 
3 Dynamics
3.1 Particle motion differential equation
Newton law
- Inertial system
- Non-inertial system


3.2 Centroid motion theorem
two inference


3.3 Momentum theorem
- momentum p
- impulse I


3.4 Angular momentum principle
- Moment of inertia : $J$
- Parallel axis theorem
- Radius of gyration : $\rho$

- angular momentum - unit : kgm2/s
 



Rigid body fixed axis rotation differential equation
$$J_z\alpha=\sum M^e_{zi}$$

Rigid body plane motion differential equation
$$\begin{cases}ma_{cx}=m\ddot{x_c}=\sum F_{xi}\ma_{cy}=m\ddot{y_c}=\sum F_{yi}\J_c\alpha=J_c\ddot{\varphi}=\sum M_{ci}\end{cases}$$

3.5 Kinetic energy theorem
3.5.1 Work for different force
- Weight : $W=\int(-G)dz=G(z_1-z_2)$
- Spring : $W=\dfrac{k}{2}(\delta^2_1-\delta^2_2)$
- Gravity : $W=Gm_0m(\dfrac{1}{r_2}-\dfrac{1}{r_1})$
- Rotation : $W=\int\limits^{\varphi_2}_{\varphi_2}md\varphi$
3.5.2 Kinetic energy
- Translation : $T=\dfrac{1}{2}mv^2$
- Fixed axis rotation : $T=\dfrac{1}{2}J_zw^2$
- Combination : $T=\dfrac{1}{2}mv_c^2+\dfrac{1}{2}J_cw^2$
3.5.3 Kinetic energy theorem
$$T_2-T_1=\sum W_i$$

3.5.4 Potential Energy and Mechanical energy conservation
- Potential E- weight: $V=mg(z-z_0)$
- spring : $V=\frac{1}{2}k\delta^2$
- gravity : $V=-\dfrac{Gm_0m}{r}$
 
- Mechanical energy conservation : $T_1+V_1=T_2+V_2$
3.6 Collision

- Recovery factor : $e=\dfrac{v_{2n}’-v_{1n}’}{v_{1n}-v_{2n}},0\le e\le 1$ 
- impulse and angular momentum - $$mv_c’-mv_c=\sum \mathbf{I_i^e}\L_{c2}-L_{c1}=\sum M_c(\mathbf{I_i^e})$$ 
- Heart collision - e=1
- e=0
  
- collision center : $h=\dfrac{J_z}{ma}$ - a : rotation center to centroid
 
3.7 D’Alembert’s principle
add inertial force, make dynamic problem to statics problem
Inertial force system simplify
Major vector : $\mathbf{F_I}=-m\mathbf{a_c}$
Major torque : $\mathbf{M_O(F_I)}=-\dfrac{d\mathbf{L_O}}{dt}$


3.8 Virtual work principle
generalized coordinates : make sure the position$\rightarrow$dof
3.8.1 Virtual displacement
small movement $\delta r$
- geometry : instantaneous center  
- analytic : get position function  
3.8.2 Principle of virtual work
$$\delta W=\sum\limits^n_1F_i\delta r_i=0$$
3.8.3 Generalized force balance
lock other virtual displacement
$Q_j=\dfrac{\delta W_j}{\delta q_j}$

3.9 General kinetic equation & Lagrange equation
- General kinetic equation - $$\sum\limits^n_1[(F_{ix}-m_i\ddot{x_i})\delta x_i+(F_{iy}-m_i\ddot{y_i})\delta y_i+(F_{iz}-m_i\ddot{z_i})\delta z_i]=0$$  
- Lagrange equation - $$\dfrac{d}{dt}\cdot\dfrac{\partial T}{\partial \dot{q_j}}-\dfrac{\partial T}{\partial q_j}=Q_j=-\dfrac{\partial V}{\partial q_j}$$ - $$\dfrac{d}{dt}\cdot\dfrac{\partial L}{\partial \dot{q_j}}-\dfrac{\partial L}{\partial q_j}=0, L=T-V$$ 