1. 1. 1 Physical properties
    1. 1.1. 1.1 Density
    2. 1.2. 1.2 Specific volume
    3. 1.3. 1.3 Compressibility & Swelling
      1. 1.3.1. 1.3.1 Equation of state
      2. 1.3.2. 1.3.2 Coefficient of expansion
      3. 1.3.3. 1.3.3 Compression ratio
    4. 1.4. 1.4 Viscosity
      1. 1.4.1. 1.4.1 Newtons’s inner friction law
      2. 1.4.2. 1.4.2 Different fluid
      3. 1.4.3. 1.4.3 dynamic viscosity
      4. 1.4.4. 1.4.4 kinematic viscosity
  2. 2. 2 Hydrostatics
    1. 2.1. 2.1 Force on the balanced fluid
      1. 2.1.1. 2.1.1 Mass force
      2. 2.1.2. 2.1.2 Surface force
    2. 2.2. 2.2 Differential Equation
      1. 2.2.1. 2.2.1 Euler equations
      2. 2.2.2. 2.2.2 Potential function
      3. 2.2.3. 2.2.3 Isobaric Surface
    3. 2.3. 2.3 Static pressure
      1. 2.3.1. Calculation
    4. 2.4. 2.4 Force to the Wall surface
  3. 3. 3 Fluid Dynamics
    1. 3.1. 3.1 Lagrange
    2. 3.2. 3.2 Euler
      1. 3.2.1. 3.2.1 Field
      2. 3.2.2. 3.2.2 Type
      3. 3.2.3. 3.2.3 Controlled body
    3. 3.3. 3.3 Fluid motion
      1. 3.3.1. 3.3.1 Particle derivative
      2. 3.3.2. 3.3.2 Path line & Stream line
      3. 3.3.3. 3.3.3 Flow rate
      4. 3.3.4. 3.3.4 Average velocity & Kinetic energy & Momentum
    4. 3.4. 3.4 Continuous equation
    5. 3.5. 3.5 Ideal fluid dynamic differential equation– Euler equation
    6. 3.6. 3.6 Real fluid dynamic differential equation – N-S equation
    7. 3.7. 3.7 Bernoulli equation
      1. 3.7.1. 3.7.1 Ideal
      2. 3.7.2. 3.7.2 Real
      3. 3.7.3. 3.7.3 Application
  4. 4. 4 Similar principle & Dimensional analysis
    1. 4.1. 4.1 Similar principle
    2. 4.2. 4.2 Dimensional analysis
  5. 5. 5 Flow in tube
    1. 5.1. 5.1 Reynolds number
    2. 5.2. 5.2 Laminar flow in round tube
    3. 5.3. 5.3 Turbulent flow in round tube
    4. 5.4. 5.4 Frictional head loss
    5. 5.5. 5.5 Local head loss
  6. 6. 6 Orifice outflow
    1. 6.1. 6.1 Thin wall
      1. 6.1.1. 6.1.1 Small orifice
      2. 6.1.2. 6.1.2 Big orifice
    2. 6.2. 6.2 Thick wall
    3. 6.3. 6.3 Cavitation

Fluid Mechanics - APS

| visited times
  • Continuum : meaning the matter in the body is continuously distributed and fills the entire region of space it occupies.
  • Fluid Particle :
    • macro small
    • micro big enough
    • have basic physical properties

1 Physical properties

1.1 Density

$$\rho=\dfrac{m}{V}$$

  • kg/m3
  • kg
  • m3

Relative Density : $d=\dfrac{\rho}{\rho_w}$

  • to water 4 degree
  • mercury : 12.59
  • oil : 0.85-0.9

1.2 Specific volume

$$v=\dfrac{V}{m}=\dfrac{1}{\rho}$$

  • m3/kg

1.3 Compressibility & Swelling

1.3.1 Equation of state

$$pv=R_gT$$

  • p Pa
  • v specific volume
  • $R_g=\dfrac{pV}{nT}=\dfrac{8314}{M}$ J/(kg K) : gas constant
  • T K

1.3.2 Coefficient of expansion

$$\alpha_V=\dfrac{1}{V}\dfrac{dV}{dt}$$

  • for ideal gas : $\alpha_V=\dfrac{1}{T}$
  • Unit : $K^{-1}$

1.3.3 Compression ratio

$$\kappa_T=-\dfrac{1}{V}\dfrac{dV}{dp}$$

  • Unit : $Pa^{-1}$
  • Bulk modulus

    $$K=\dfrac{1}{\kappa_T}$$

  • Incompressible fluid : $\kappa_T$

1.4 Viscosity

1.4.1 Newtons’s inner friction law

1.4.2 Different fluid

  • plastic
  • pseudoplastic
  • newtonian
  • dilatant
  • ideal

1.4.3 dynamic viscosity

$$\mu=\dfrac{\tau}{dv/dy}$$

  • Unit : $Pa\cdot s$

1.4.4 kinematic viscosity

$$v=\dfrac{\mu}{\rho}$$

  • Unit : m2/s

ideal fluid : no viscosity

2 Hydrostatics

2.1 Force on the balanced fluid

2.1.1 Mass force

$\propto m$

unit mass force : $\vec{f}=f_x\vec i+f_y\vec j+f_z\vec k\=\dfrac{F_x}{m}\vec i+\dfrac{F_y}{m}\vec j+\dfrac{F_z}{m}\vec k$

2.1.2 Surface force

have something to do with S

Surface Stress

  • normal stress : $p=\dfrac{dP}{dA}$
  • shear stress : $\tau=\dfrac{T}{A}$

2.2 Differential Equation

2.2.1 Euler equations

$$\begin{cases}f_x-\dfrac{1}{\rho}\dfrac{\partial P}{\partial x}&=0\f_y-\dfrac{1}{\rho}\dfrac{\partial P}{\partial y}&=0\f_z-\dfrac{1}{\rho}\dfrac{\partial P}{\partial z}&=0\end{cases}$$

2.2.2 Potential function

$$dp=-\rho dW$$

2.2.3 Isobaric Surface

$$f_xdx+f_ydy+f_zdz=0$$

  • constant potential surface : $dW=0$
  • perpendicular to the mass force : $\vec{a_m}\cdot d\vec{s}=0$
  • two insoluble fluid interface is isobaric surface

2.3 Static pressure

Incompressible fliud

$dp=-\rho dW=-\rho gdz$

$\downarrow \rho=C$

$dz+\dfrac{dp}{\rho g}=0$

$$z+\dfrac{p}{\rho g}=c$$

Calculation

  • Absolute pressure : $p$

  • Vacuum pressure / Measuring pressure: $p_m$

  • Local pressure : $p_a$

$p>p_a,\quad p=p_a+p_m\p<p_a,\quad p=p_a-p_m$

  • manometer

2.4 Force to the Wall surface

  • plane

  • cylinder

3 Fluid Dynamics

3.1 Lagrange

describe each particle path

3.2 Euler

describe all the particle transient parameter at same time, adapt to fluid parcel

3.2.1 Field

  • velocity
  • pressure
  • density
  • temperature

3.2.2 Type

  • Constant field : with time no change

  • Uniform field : with position no change

3.2.3 Controlled body

a space has constant position in coordinate, with any shape

3.3 Fluid motion

3.3.1 Particle derivative

relationship between all physical quantities and time

3.3.2 Path line & Stream line

  • P : lagrange particle moving path

  • S : fluid filed $\rightarrow$velocity field

    $$\dfrac{dx}{v_x}=\dfrac{dy}{v_y}=\dfrac{dz}{v_z}=t$$

    • Properties

      • constant shape, particle moving path same with stream line

      • dont converge except at station and odd point

    • stream tube

3.3.3 Flow rate

unit time through some controlled surface

$$dq_v=vdA​$$

net flow rate : closed surface

$$q_v=\oiint\limits_A\vec v\vec n dA​$$

3.3.4 Average velocity & Kinetic energy & Momentum

  • $\bar u=\dfrac{q_v}{A}​$
  • laminar : $\alpha=2,\beta=\frac{4}{3}$
  • turbulent : $\alpha=1.06\approx1,\beta=1.02 \approx1$

3.4 Continuous equation

law of conservation of mass

  • one dimensional flow

3.5 Ideal fluid dynamic differential equation– Euler equation

$$f-\dfrac{1}{\rho}\bigtriangledown p=\dfrac{\partial u}{\partial t}+(u\bigtriangledown)u$$

  • constant flow : $\dfrac{\partial u_x}{\partial t}=0$, same in y z
  • still : $u_x=u_y=u_z=0$

3.6 Real fluid dynamic differential equation – N-S equation

  • with viscosity

  • Navier Stokes equation

3.7 Bernoulli equation

3.7.1 Ideal

under N-S

  • incompressible ideal stable flow
  • along stream line intergal
  • mass force only gravity

$\rho$ is constant

$$z+\dfrac{p}{\rho g}+\dfrac{v^2}{2g}=C$$

  • z : elevation head
  • $\dfrac{p}{\rho g}$ : pressure head
  • $\dfrac{v^2}{2g}$ : velocity head
  • sum : total head

3.7.2 Real

$h_v$ : head loss

  • $h_f=\lambda\dfrac{l}{d}\dfrac{U^2}{2g}$ : frictional head loss
    • $\lambda$ : frictional loss factor
    • U : average velocity at each section
  • $h_j=\zeta\dfrac{U^2}{2g}$ : local head loss

$\sum h_v=\sum h_f+\sum h_j$

3.7.3 Application

  • Pitot tube

    $$\dfrac{p}{\rho g}+\dfrac{v^2}{2g}=\dfrac{p_0}{\rho g}$$

    • B : station, u=0
  • Venturi flow meter

4 Similar principle & Dimensional analysis

4.1 Similar principle

Mechanical similarity : real thing have ratio at some physical quantities with model

  • geometry : l
  • kinematic: v
  • dynamic : f

4.2 Dimensional analysis

Buckingham theorem ($\pi$ theorem)

5 Flow in tube

5.1 Reynolds number

  • laminar flow
  • Turbulent flow

$Re=\dfrac{ud}{v}=\dfrac{\rho ud}{\mu}$

  • v : kinematic viscosity

  • $\mu$ : dynamic viscosity

  • $d=\dfrac{4A}{x}$ : Hydraulic diameter

$Re_c$ : critical reynolds number

  • upper : 2000 (round tube)
  • lower : 13800 (round tube)

5.2 Laminar flow in round tube

5.3 Turbulent flow in round tube

Mixed length theory

5.4 Frictional head loss

5.5 Local head loss

6 Orifice outflow

6.1 Thin wall

6.1.1 Small orifice

6.1.2 Big orifice

6.2 Thick wall

6.3 Cavitation

v high p low, solution of air in the fluid decrease, air comes out, even fluid vaporize.

  • mechanical injury

  • bump

    • low height
    • less head loss
    • low speed
    • big d