Fluid Mechanics - APS
- Continuum : meaning the matter in the body is continuously distributed and fills the entire region of space it occupies.
- Fluid Particle :
- macro small
- micro big enough
- have basic physical properties
1 Physical properties
1.1 Density
$$\rho=\dfrac{m}{V}$$
- kg/m3
- kg
- m3
Relative Density : $d=\dfrac{\rho}{\rho_w}$
- to water 4 degree
- mercury : 12.59
- oil : 0.85-0.9
1.2 Specific volume
$$v=\dfrac{V}{m}=\dfrac{1}{\rho}$$
- m3/kg
1.3 Compressibility & Swelling
1.3.1 Equation of state
$$pv=R_gT$$
- p Pa
- v specific volume
- $R_g=\dfrac{pV}{nT}=\dfrac{8314}{M}$ J/(kg K) : gas constant
- T K
1.3.2 Coefficient of expansion
$$\alpha_V=\dfrac{1}{V}\dfrac{dV}{dt}$$
- for ideal gas : $\alpha_V=\dfrac{1}{T}$
- Unit : $K^{-1}$
1.3.3 Compression ratio
$$\kappa_T=-\dfrac{1}{V}\dfrac{dV}{dp}$$
- Unit : $Pa^{-1}$
Bulk modulus
$$K=\dfrac{1}{\kappa_T}$$
Incompressible fluid : $\kappa_T$
1.4 Viscosity
1.4.1 Newtons’s inner friction law
1.4.2 Different fluid
- plastic
- pseudoplastic
- newtonian
- dilatant
- ideal
1.4.3 dynamic viscosity
$$\mu=\dfrac{\tau}{dv/dy}$$
- Unit : $Pa\cdot s$
1.4.4 kinematic viscosity
$$v=\dfrac{\mu}{\rho}$$
- Unit : m2/s
ideal fluid : no viscosity
2 Hydrostatics
2.1 Force on the balanced fluid
2.1.1 Mass force
$\propto m$
unit mass force : $\vec{f}=f_x\vec i+f_y\vec j+f_z\vec k\=\dfrac{F_x}{m}\vec i+\dfrac{F_y}{m}\vec j+\dfrac{F_z}{m}\vec k$
2.1.2 Surface force
have something to do with S
Surface Stress
- normal stress : $p=\dfrac{dP}{dA}$
- shear stress : $\tau=\dfrac{T}{A}$
2.2 Differential Equation
2.2.1 Euler equations
$$\begin{cases}f_x-\dfrac{1}{\rho}\dfrac{\partial P}{\partial x}&=0\f_y-\dfrac{1}{\rho}\dfrac{\partial P}{\partial y}&=0\f_z-\dfrac{1}{\rho}\dfrac{\partial P}{\partial z}&=0\end{cases}$$
2.2.2 Potential function
$$dp=-\rho dW$$
2.2.3 Isobaric Surface
$$f_xdx+f_ydy+f_zdz=0$$
- constant potential surface : $dW=0$
- perpendicular to the mass force : $\vec{a_m}\cdot d\vec{s}=0$
- two insoluble fluid interface is isobaric surface
2.3 Static pressure
Incompressible fliud
$dp=-\rho dW=-\rho gdz$
$\downarrow \rho=C$
$dz+\dfrac{dp}{\rho g}=0$
$$z+\dfrac{p}{\rho g}=c$$
Calculation
Absolute pressure : $p$
Vacuum pressure / Measuring pressure: $p_m$
Local pressure : $p_a$
$p>p_a,\quad p=p_a+p_m\p<p_a,\quad p=p_a-p_m$
- manometer
2.4 Force to the Wall surface
plane
cylinder
3 Fluid Dynamics
3.1 Lagrange
describe each particle path
3.2 Euler
describe all the particle transient parameter at same time, adapt to fluid parcel
3.2.1 Field
- velocity
- pressure
- density
- temperature
3.2.2 Type
Constant field : with time no change
Uniform field : with position no change
3.2.3 Controlled body
a space has constant position in coordinate, with any shape
3.3 Fluid motion
3.3.1 Particle derivative
relationship between all physical quantities and time
3.3.2 Path line & Stream line
P : lagrange particle moving path
S : fluid filed $\rightarrow$velocity field
$$\dfrac{dx}{v_x}=\dfrac{dy}{v_y}=\dfrac{dz}{v_z}=t$$
Properties
constant shape, particle moving path same with stream line
dont converge except at station and odd point
stream tube
3.3.3 Flow rate
unit time through some controlled surface
$$dq_v=vdA$$
net flow rate : closed surface
$$q_v=\oiint\limits_A\vec v\vec n dA$$
3.3.4 Average velocity & Kinetic energy & Momentum
- $\bar u=\dfrac{q_v}{A}$
- laminar : $\alpha=2,\beta=\frac{4}{3}$
- turbulent : $\alpha=1.06\approx1,\beta=1.02 \approx1$
3.4 Continuous equation
law of conservation of mass
one dimensional flow
3.5 Ideal fluid dynamic differential equation– Euler equation
$$f-\dfrac{1}{\rho}\bigtriangledown p=\dfrac{\partial u}{\partial t}+(u\bigtriangledown)u$$
- constant flow : $\dfrac{\partial u_x}{\partial t}=0$, same in y z
- still : $u_x=u_y=u_z=0$
3.6 Real fluid dynamic differential equation – N-S equation
with viscosity
Navier Stokes equation
3.7 Bernoulli equation
3.7.1 Ideal
under N-S
- incompressible ideal stable flow
- along stream line intergal
- mass force only gravity
$\rho$ is constant
$$z+\dfrac{p}{\rho g}+\dfrac{v^2}{2g}=C$$
- z : elevation head
- $\dfrac{p}{\rho g}$ : pressure head
- $\dfrac{v^2}{2g}$ : velocity head
- sum : total head
3.7.2 Real
$h_v$ : head loss
- $h_f=\lambda\dfrac{l}{d}\dfrac{U^2}{2g}$ : frictional head loss
- $\lambda$ : frictional loss factor
- U : average velocity at each section
- $h_j=\zeta\dfrac{U^2}{2g}$ : local head loss
$\sum h_v=\sum h_f+\sum h_j$
3.7.3 Application
Pitot tube
$$\dfrac{p}{\rho g}+\dfrac{v^2}{2g}=\dfrac{p_0}{\rho g}$$
- B : station, u=0
Venturi flow meter
4 Similar principle & Dimensional analysis
4.1 Similar principle
Mechanical similarity : real thing have ratio at some physical quantities with model
- geometry : l
- kinematic: v
- dynamic : f
4.2 Dimensional analysis
Buckingham theorem ($\pi$ theorem)
5 Flow in tube
5.1 Reynolds number
- laminar flow
- Turbulent flow
$Re=\dfrac{ud}{v}=\dfrac{\rho ud}{\mu}$
v : kinematic viscosity
$\mu$ : dynamic viscosity
$d=\dfrac{4A}{x}$ : Hydraulic diameter
$Re_c$ : critical reynolds number
- upper : 2000 (round tube)
- lower : 13800 (round tube)
5.2 Laminar flow in round tube
5.3 Turbulent flow in round tube
Mixed length theory
5.4 Frictional head loss
5.5 Local head loss
6 Orifice outflow
6.1 Thin wall
6.1.1 Small orifice
6.1.2 Big orifice
6.2 Thick wall
6.3 Cavitation
v high p low, solution of air in the fluid decrease, air comes out, even fluid vaporize.
mechanical injury
bump
- low height
- less head loss
- low speed
- big d